- 博客(17)
- 收藏
- 关注
原创 Python数据清洗以及数据不一致的解决办法
基础清理strip()lower()replace()。复杂模式:正则表达式。结构化数据split()join()。批量处理:Pandas 的字符串方法。如果需要更具体的建议,可以提供实际数据示例!
2025-04-22 09:43:56
1369
原创 Seaborn 的核心用法总结
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,语法简洁、默认样式美观。遇到具体问题时,可以提供你的数据结构和绘图目标,我会给出针对性代码!)的散点图,并添加回归线。
2025-04-18 14:30:30
396
原创 Pandas Series.dt.day
这段代码的作用是从 Pandas DataFrame 的。如果有其他 Pandas 日期处理问题,欢迎继续提问!(即一个月中的第几天),并将结果存储到新变量。,可直接用于统计分析或可视化。
2025-04-18 09:24:24
274
原创 to_datetime
库将一个 DataFrame 列中的日期字符串转换为标准的。如果有其他列或格式需要解析,可以继续提问!,可直接用于时间序列分析或绘图。
2025-04-18 09:17:10
195
原创 Python中matplotlib的platlibsubplots()详解
子图的图形(即并排显示 2 个子图),并设置整个画布的尺寸。如果是更复杂的布局(例如 2 行 3 列),可以修改为。会是一个 2×3 的数组。
2025-04-17 10:26:36
315
原创 minmax_scaling函数
的指定列进行**最小-最大归一化(Min-Max Scaling)**处理。的作用是对数据进行线性变换,使其值缩放到指定的范围(通常是。),请检查其文档,因为不同库的实现可能略有不同。这段代码看起来是使用了一个名为。如果你用的是某个库(如。
2025-04-17 09:59:45
245
原创 NumPy库中的random.exponential()
这段代码使用NumPy库中的函数生成了一个包含1000个随机数的数组,这些随机数服从指数分布。
2025-04-17 09:50:52
213
原创 Pandas DataFrame.select_dtypes() 用法详解
是数据清洗和特征工程中非常有用的工具,特别是在需要按数据类型进行不同处理的场景下。的方法,它可以帮助你快速选择特定数据类型的列进行分析或处理。比手动遍历列并检查类型更高效,因为它是向量化操作。对于大型DataFrame,是 Pandas 中用于。
2025-04-16 16:27:21
343
原创 Pandas DataFrame.fillna() 用法详解
是 Pandas 中用于填充缺失值(NaN 或 None)的重要方法,它提供了多种灵活的方式来处理数据中的空值。是数据预处理中不可或缺的工具,合理使用可以显著提高数据质量,为后续分析建模奠定基础。
2025-04-16 14:56:23
658
原创 Python的pandas中的DataFrame.loc[]的用法
可以精确选择行、列或特定单元格。它支持切片、布尔索引和函数调用,是数据操作中最常用的方法之一。是 Pandas 中最灵活的数据选择方式,适用于精确的数据查询和修改。在 Pandas 中,不仅可以查询,还可以。
2025-04-16 14:48:07
679
原创 Python的pandas中的DataFrame.dropna()用法,删除缺失值
是数据清洗的关键操作。可以精准控制数据清洗的粒度,是处理缺失值的利器!在 Pandas 中,
2025-04-16 14:17:39
1329
原创 python中的pandas的shape的用法
是 Pandas 库中 DataFrame 对象的一个属性,用于快速获取数据的维度信息(行数和列数)。,可以高效掌握数据的结构,为后续分析或建模提供基础信息。,类似于 NumPy 数组的。
2025-04-16 11:32:27
489
原创 python中关于numpy中的生成随机种子
通过设置种子,你能在“随机”与“可复现”之间找到平衡,这对科研和工程至关重要。用于设置随机数生成器的种子(seed),目的是。在 NumPy 中,
2025-04-16 11:16:40
452
空空如也
苍穹外卖管理端登陆不进去
2024-03-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人