机器学习--训练集和验证集

参考文章链接
这行代码使用Scikit-learn的train_test_split()函数将数据集(X, y)划分为训练集验证集,具体含义如下:

X_train, X_valid, y_train, y_valid = train_test_split(
    X,                      # 特征数据
    y,                      # 标签数据
    train_size=0.8,         # 训练集比例80% 
    test_size=0.2,          # 验证集比例20%
    random_state=0          # 随机种子(保证可重复性)
)

参数详解:

  1. X:特征数据(通常是二维数组/DataFrame,形状为[n_samples, n_features])
  2. y:对应的标签数据(一维数组/Series)
  3. train_size=0.8:指定训练集占80%
  4. test_size=0.2:指定验证集占20%(与train_size相加应为1)
  5. random_state=0:固定随机种子,确保每次划分结果相同

返回值:

  • X_train:训练集特征(原始数据的80%)
  • X_valid:验证集特征(原始数据的20%)
  • y_train:训练集标签
  • y_valid:验证集标签

可视化理解:

原始数据(X, y):

   X特征数据          y标签
[[x1, x2, x3],       [y1,
 [x4, x5, x6],        y2,
 ...                  ...]

划分后:

训练集(X_train, y_train) - 80%数据
验证集(X_valid, y_valid) - 20%数据

典型应用场景:

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# 划分数据集
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值