Pandas中的dataframe.corr()用法

dataframe.corr() 是 Pandas 中用于计算 列与列之间的相关系数 的方法,常用于分析数据集中变量之间的线性关系。以下是其详细用法和解释:


1. 基本语法

df.corr(
    method='pearson',  # 相关系数计算方法
    min_periods=1,     # 计算所需的最小样本数
    numeric_only=False # 是否只计算数值列(Pandas 2.0+ 默认 True)
)

参数说明

参数说明
method计算相关系数的方法,可选:
'pearson'(默认):皮尔逊相关系数(线性相关)
'spearman':斯皮尔曼秩相关系数(单调相关)
'kendall':肯德尔秩相关系数(有序数据相关)
min_periods计算相关系数所需的最小有效样本数,低于此值返回 NaN
numeric_only是否只计算数值型列的相关系数(Pandas 2.0+ 默认为 True

2. 返回值

返回一个 对称的相关系数矩阵(DataFrame),其中:

  • 行和列:均为 DataFrame 的列名。
  • :相关系数(范围 [-1, 1]):
    • 1:完全正相关
    • -1:完全负相关
    • 0:无线性相关

3. 使用示例

示例数据

import pandas as pd

data = {
    'A': [1, 2, 3, 4, 5],
    'B': [5, 4, 3, 2, 1],  # 完全负相关
    'C': [1, 3, 2, 5, 4],  # 部分正相关
    'D': ['X', 'Y', 'X', 'Y', 'X']  # 非数值列(默认不计算)
}

df = pd.DataFrame(data)

(1) 计算所有数值列的相关系数

corr_matrix = df.corr()
print(corr_matrix)

输出:

     A    B    C
A  1.0 -1.0  0.8
B -1.0  1.0 -0.8
C  0.8 -0.8  1.0
  • AB 完全负相关(-1.0)。
  • AC 高度正相关(0.8)。

(2) 使用 Spearman 方法

df.corr(method='spearman')

(3) 仅计算部分列的相关系数

df[['A', 'B']].corr()  # 只计算 A 和 B 的相关性

(4) 过滤高相关性列

# 找出与 A 列相关性 > 0.5 的列
target_corr = corr_matrix['A'][corr_matrix['A'] > 0.5]
print(target_corr)  # 输出: A    1.0, C    0.8

4. 可视化相关系数矩阵

seaborn.heatmap() 可以直观展示相关性:

import seaborn as sns
import matplotlib.pyplot as plt

sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.show()
  • 红色表示正相关,蓝色表示负相关。
  • annot=True 显示数值。

5. 注意事项

  1. 非数值列

    • 默认 numeric_only=False 时,非数值列会被忽略(Pandas 2.0+ 默认 True)。
    • 如果包含非数值列,需先过滤:
      df.select_dtypes(include=['number']).corr()
      
  2. 缺失值处理

    • corr() 会自动跳过 NaN 值,但样本过少可能导致结果不可靠。
  3. 相关性 ≠ 因果关系

    • 即使两个变量高度相关,也不代表它们有直接因果关系。

6. 不同方法的适用场景

方法适用场景特点
Pearson连续数据,线性关系对异常值敏感
Spearman有序数据,单调关系基于排名,不受异常值影响
Kendall小样本有序数据计算成本高

总结

  • df.corr() 是分析特征间相关性的核心工具。
  • 默认使用 Pearson 方法,可通过 method 切换。
  • 结合可视化(如热力图)可以更直观地理解数据关系。
  • 注意非数值列和缺失值的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值