密码学中的数论 Number Theory
一、Notation
1.背景(Background)
我们将使用一些数论的知识来构造:
1.密钥交换协议(Key exchange protocols)
2.数字签名(Digital Signatures)
3.公钥加密(Public-Key encryption)
2.相关符号(Notation)
在数论中:
1.N 表示为正整数;
2.p表示为正质数;
3. Z N = { 0 , 1 , 2 , . . . , N − 1 } \mathbb{Z}_N= \left\{0,1,2,...,N-1\right\} ZN={
0,1,2,...,N−1} , Z N \mathbb{Z}_N ZN表示一个环,其加法和乘法都定义为模N的。
3.模运算(Modular arithmetic)
例如:令 N = 12:
9 + 8 = 15 i n Z 12 \qquad\qquad\qquad9 + 8 = 15\qquad in \qquad \mathbb{Z}_{12} 9+8=15inZ12
5 × 8 = 11 i n Z 12 \qquad\qquad\qquad5 × 8 = 11\qquad in \qquad \mathbb{Z}_{12} 5×8=11inZ12
5 − 7 = 10 i n Z 12 \qquad\qquad\qquad5 - 7 = 10\qquad in \qquad \mathbb{Z}_{12} 5−7=10inZ12
注意:所有知道的关于加法和乘法的运算法则在 Z N \mathbb{Z}_N ZN中也同样适用,例如分配率:
x ⋅ ( y + z ) = x ⋅ y + x ⋅ z i n Z 12 x·(y+z)=x·y+x·z\qquad in \qquad \mathbb{Z}_{12} x⋅(y+z)=x⋅y+x⋅zinZ12
4.最大公约数(Greatest common divisor)
定义:对于整数 x , y : g c d ( x , y ) x,y:gcd(x,y) x,y:gcd(x,y) 表示 x , y x,y x,y的最大公约数。
例如: g c d ( 12 , 18 ) = 6 gcd(12,18)=6 gcd(12,18)=6
指定 x , y x,y x,y,总存在另外两个整数(使用扩展欧几里得 Extended Euclid 算法找到) a , b a,b a,b,使得贝祖等式成立:
a ⋅ x + b ⋅ y = g c d ( x , y ) a·x+b·y=gcd(x,y) a⋅x+b⋅y=gcd(x,y)
如果 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1,则说明 x , y x,y x,y互质。
5.模逆(Modular inversion)
我们知道,对于有理数而言,2的倒数(inversion)是1/2。那么在 Z N \mathbb{Z}_N ZN中呢?
定义:在 Z N \mathbb{Z}_N ZN中 x x x的逆是中的元素 y y y,其中 y y y满足 x ⋅ y = 1 i n Z N x·y=1\quad in\quad\mathbb{Z}_N x⋅y=1inZ