密码学中的数论一:模运算、最大公约数、模逆、线性同余方程、(扩展)欧几里德算法。

本文介绍了密码学中数论的基础知识,包括模运算、最大公约数、模逆和线性同余方程的解决方法。通过扩展欧几里德算法,可以找到数的模逆和解决线性方程。这些概念在密钥交换协议、数字签名和公钥加密等领域起着关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Notation

1.背景(Background)

我们将使用一些数论的知识来构造:
    1.密钥交换协议(Key exchange protocols)
    2.数字签名(Digital Signatures)
    3.公钥加密(Public-Key encryption)

2.相关符号(Notation)

在数论中:
    1.N 表示为正整数;
    2.p表示为正质数;
    3. Z N = { 0 , 1 , 2 , . . . , N − 1 } \mathbb{Z}_N= \left\{0,1,2,...,N-1\right\} ZN={ 0,1,2,...,N1} , Z N \mathbb{Z}_N ZN表示一个环,其加法和乘法都定义为模N的。

3.模运算(Modular arithmetic)

  例如:令 N = 12:
9 + 8 = 15 i n Z 12 \qquad\qquad\qquad9 + 8 = 15\qquad in \qquad \mathbb{Z}_{12} 9+8=15inZ12
5 × 8 = 11 i n Z 12 \qquad\qquad\qquad5 × 8 = 11\qquad in \qquad \mathbb{Z}_{12} 5×8=11inZ12
5 − 7 = 10 i n Z 12 \qquad\qquad\qquad5 - 7 = 10\qquad in \qquad \mathbb{Z}_{12} 57=10inZ12

  注意:所有知道的关于加法和乘法的运算法则在 Z N \mathbb{Z}_N ZN中也同样适用,例如分配率:
                             x ⋅ ( y + z ) = x ⋅ y + x ⋅ z i n Z 12 x·(y+z)=x·y+x·z\qquad in \qquad \mathbb{Z}_{12} x(y+z)=xy+xzinZ12

4.最大公约数(Greatest common divisor)

  定义:对于整数 x , y : g c d ( x , y ) x,y:gcd(x,y) xygcd(xy) 表示 x , y x,y xy的最大公约数。
  例如: g c d ( 12 , 18 ) = 6 gcd(12,18)=6 gcd(12,18)=6
  指定 x , y x,y xy,总存在另外两个整数(使用扩展欧几里得 Extended Euclid 算法找到) a , b a,b ab,使得贝祖等式成立:
                                         a ⋅ x + b ⋅ y = g c d ( x , y ) a·x+b·y=gcd(x,y) ax+by=gcd(xy)
  如果 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1,则说明 x , y x,y xy互质。

5.模逆(Modular inversion)

  我们知道,对于有理数而言,2的倒数(inversion)是1/2。那么在 Z N \mathbb{Z}_N ZN中呢?
  定义:在 Z N \mathbb{Z}_N ZN x x x的逆是中的元素 y y y,其中 y y y满足 x ⋅ y = 1 i n Z N x·y=1\quad in\quad\mathbb{Z}_N xy=1inZ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值