python: json格式解析与转换

使用Python标准库: json 实现json格式字符串与Python对象的互转。

欢迎关注本人公众号--交通数据探索师

但注意,只有有效的json格式字符串才能够转换为Python对象。

OK,问题来了,什么叫有效的json格式字符串?

  • 字符串必须用双引号

  • 在同一个对象中,所有的键必须是唯一的

  • 最后一个元素后面不应有逗号

  • 字符串中不应包含注释

1、json格式字符串转python类型

主要用到两个函数:

  • json.loads()

    • loads为'load string'的缩写,用来解析json格式的字符串(该字符串要包含有效的json数据),返回python对象(列表或字典)

import json

# json格式的字符串  可解析为python列表
json_data_list = '[{"name": ["Alice", "Bob"], "age": [25, 30]}]'
# json格式的字符串  可解析为python字典
json_data_dict = '{"name": ["Alice", "Bob"], "age": [25, 30]}'

# 解析json格式的字符串
parse_json_data_list = json.loads(json_data_list)
parse_json_data_dict = json.loads(json_data_dict)

print(f'json_data_list的类型为: {type(json_data_list)}; parse_json_data_list的类型为: {type(parse_json_data_list)}')
print(f'json_data_dict的类型为: {type(json_data_dict)}; parse_json_data_dict的类型为: {type(parse_json_data_dict)}')

# 转为python类型之后,比如转为python字典,我们就可以使用dict相关方法进行数据的提取等操作

  • json.load()

    • load用于从一个文件中读取json数据,接收一个文件对象,返回一个python对象

如读取txt文件中存储的字符串形式的json数据,如下图

import json

# open函数返回一个文件对象,并将其赋给f
with open(r'test_json.txt', 'r') as f:
    json_content = json.load(f)
    print(json_content)
    print(type(json_content))

2、python对象转为json格式字符串

主要用到两个函数:

  • json.dumps

    • dumps为'dump string'的缩写,用于将python对象转为json格式的字符串

import json

# python对象
data_list = [1, 2, 3]
data_dict = {"name": ["Alice", "Bob"], "age": [25, 30]}

# 转为json对象
json_data_list = json.dumps(data_list)
json_data_dict = json.dumps(data_dict)

print(f'data_list的类型为: {type(data_list)}; json_data_list的类型为: {type(json_data_list)}')
print(f'data_dict的类型为: {type(data_dict)}; json_data_dict的类型为: {type(json_data_dict)}')

  • json.dump

    • dump用于将 python 对象转换为json格式,并将结果写入文件,它需要一个文件对象作为输出目标

import json

data_dict = {"name": ["Alice", "Bob"], "age": [25, 30]}

# 创建一个test_json.json文件(w: 文件不存在则创建)
with open(r'test_json.json', 'w') as f:
    # indent: 该参数用来控制缩进 用来美化json使其有清晰的层次结构
    json.dump(data_dict, f, indent=4)

3、json转DataFrame

直接使用pd.read_json函数读取json格式字符串、json文件,然后转为DataFrame

import pandas as pd
from io import StringIO
 
# 读取JSON数据为DataFrame对象
json_data = '{"name": ["Alice", "Bob"], "age": [25, 30]}'
# read_json 函数通常期望接收一个文件路径或文件对象,而不是字符串,
# 所以这里使用了StringIO 来将字符串json_data 转换成一个类似文件的对象,这样read_json 就可以从中读取数据
df = pd.read_json(StringIO(json_data))
df

 或直接读取json文件

import pandas as pd

data = pd.read_json(r'test_json.json')
data

 4、DataFrame转json

import pandas as pd

data = pd.DataFrame(
    {
        'value': range(10),
        'time': pd.date_range('2024-01-01', freq='D', periods=10),
        'flag': list('abcdefghij')
    }
)

data.to_json('test_to_json.json', indent=4)
# data.to_json('test_to_json.json', indent=4, date_unit='s') date_unit='s'可将时间戳转换为以秒为单位的时间戳

部分输出结果如下,

同时可以使用orient(其参数可以取:split、records、index、columns、values、table)参数改变输出数据结构,大家可以尝试一下各个参数取值出来的效果,下面展示orient='records'的输出效果。

import pandas as pd

data = pd.DataFrame(
    {
        'value': range(10),
        'time': pd.date_range('2024-01-01', freq='D', periods=10),
        'flag': list('abcdefghij')
    }
)

data.to_json('test_to_json.json', indent=4, orient='records')

 部分输出结果如下,输出是一个 JSON 对象数组,其中每个对象对应 DataFrame 的一行。

同时注意到,时间格式在转为json之后,变成了时间戳,怎么保留原来的时间格式呢?

那就需要在转为json之前,先把时间格式转为字符串格式,再转为json

import pandas as pd

data = pd.DataFrame(
    {
        'value': range(10),
        'time': pd.date_range('2024-01-01', freq='D', periods=10),
        'flag': list('abcdefghij')
    }
)

data['time'] = data['time'].astype(str)

data.to_json('test_to_json.json', indent=4, orient='records')

 部分输出结果为,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

煮雨小筑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值