IEEE TRO 北理工团队研制的多飞行器集联操作平台,仅依赖机载传感器完成多种复杂空中操作任务

飞行操作型机器人是机器人领域新兴的研究方向,它使飞行机器人从以往的只具备观察环境的单一功能发展为具有与环境交互接触的能力,并极大提升了传统操作型机器人的机动能力、活动范围,是拥有战略性前景的“下一代飞行机器人”。
随着对飞行操作机器人研究的不断细化深入,也发现了飞行机器人开展空中操作存在一系列的障碍和挑战。飞行操作机器人大多依托于微小型飞行器平台。而现有的微小型飞行器为了提高飞行能量效率,一般采用欠驱动的方式。采用这样的欠驱动方式保证了飞行器的能控性与飞行能量效率。然而欠驱动飞行器难以跟踪SE(3)中的任意六维轨迹,通常需要位置轨迹与姿态轨迹满足一定的动态约束条件。同时,由于微小型飞行器大多负载较小,在进行与环境的接触式交互时,所能产生的力与力矩不足。事实上,微小型欠驱动飞行器的这些特点使其更适宜作为观察平台,而非操作平台。以现有的微小型飞行器为模块,通过运动副将多个模块联接组合为“集联平台”,相比于设计全新结构的飞行器,更易实现。这一“集联体”可将多个飞行器提供的力与力矩进行合成,整体上可获得六维全向驱动力。从而可以同时、独立地改变“集联体”的六维位置和姿态。因而,以这种“集联体”作为操作平台,可以在一定程度上弥补单一飞行器作为操作平台的缺陷,有望获得更高的操作灵活性和更大的操作力,具有实现与环境六自由度柔顺交互的潜力。北京理工大学机电学院俞玉树团队长期从事飞行操作机器人相关研究,已创新设计并研制出多种多飞行器集联平台,并围绕该类平台开展了集联主动感知、柔顺控制、行为学习等关键技术研究。相关成果为飞行机器人在与环境物理接触条件下执行观测与操作任务提供了重要的理论与技术支撑。在这里插入图片描述
图1 具有三架和四架子机的集联飞行平台实物图近日,俞玉树团队联合清华大学孙富春教授等在IEEE Transactions on Robotics上以Regular Paper形式发表了多飞行器集联操作平台方面的成果“Versatile Tasks on Integrated Aerial Platforms Using Only Onboard Sensors: Control, Estimation, and Validation”。该研究提出了一种多机集联飞行平台(Integrated Aerial Platforms , IAP)的控制和状态估计框架,该平台仅使用机载传感器即可执行包括空中操作在内多种复杂任务,并首次通过系列实验验证了该框架的有效性。俞玉树和孙富春教授为论文共同通讯作者。论文作者还包括团队研究生王凯迪、赖冈桦、杜健睿、孙嘉丽,北京理工大学机械与车辆学院徐彬教授,荷兰特文特大学Antonio Franchi教授。1. 引言IAP是由多个子飞行器通过被动球关节连接到一个刚性中心平台而组成的一种具有全驱动能力的飞行平台。相较于具有倾斜旋翼的飞行平台,IAP具有更高的悬停效率和更大的可达力和力矩空间,结合全驱动的特点使得IAP在进行目标观测、接触式操作等任务时具有优势,但在目前的研究中仍面临多项挑战。首先,现有研究缺乏针对IAP的全面6维交互控制或直接力和力矩控制框架,尤其是在多飞行器协同的复杂场景中。其次,针对IAP的目标观测和侦察任务,需要特别关注视野(FOV)问题,并解决主动感知相关的技术难题。此外,当前工作过度依赖外部定位系统(如GPS或动作捕捉系统)和力传感器,这限制了IAP在无外部支持环境中的应用。因此,本文提出了一种应用于IAP的控制与状态估计框架,旨在解决多无人机系统在仅依赖机载传感器的情况下执行复杂任务(如目标观测、环境接触和地图构建)的挑战。主要贡献包括:1)设计了一个全面的控制框架,包含低层运动控制器、6维交互控制器、直接力和力矩控制以及姿态轨迹校正模块;2)开发了一种基于几何模型预测控制的视觉感知姿态校正(Perception-Aware Model Predictive Control,PAMPC)算法,用于在动态环境中保持目标物体在检测视野内;3)提出了一种融合多视觉惯性里程计(VIO)和运动学约束的相对定位算法,显著提高了IAP的定位精度;4)首次实现了仅依赖机载传感器的IAP复杂实际系统,通过所设计的IAP原型机进行的实际飞行实验验证了控制和状态估计框架的有效性,展示了IAP在目标跟踪、地图构建和六维力交互任务中的多功能性,为IAP这一复杂系统的实际应用奠定了坚实的基础。在这里插入图片描述
2. IAP的控制和状态估计框架IAP的控制和状态估计框架(图2),旨在通过集成多个控制和感知模块,实现高效的多任务执行。IAP的控制框架包括低层位姿运动控制器和高层控制模块,其中高层控制模块由6维导纳滤波器、直接力和力矩控制器以及PAMPC姿态校正模块组成。低层控制器负责系统的稳定性,而高层控制模块则根据不同任务需求(如目标观测任务或接触式交互任务)动态调整控制策略。PAMPC姿态校正算法通过结合离线和在线计算,确保复杂动力学下的高效姿态校正。在位姿状态估计方面,通过融合多子机的视觉惯性里程计(VIO)和运动学约束,实现了全局定位和相对状态估计,显著提升了定位精度。整个框架无需依赖外部定位系统或力/力矩传感器,仅通过机载传感器即可完成多样化任务,充分展示了IAP在自主性和多功能性方面的优势。图2 IAP的控制和状态估计框架在这里插入图片描述
3. 协同定位与建图IAP的协作定位与建图方法通过融合视觉惯性里程计(VIO)和运动学约束,实现了集联中心平台及子飞行器的全局定位与协作建图。该方法旨在实现中心平台和子飞行器的全局定位(图3),并在统一的全局坐标系中进行建图(图4)。具体而言,该方法利用子飞行器的VIO数据和运动学约束,通过松散融合算法提升定位精度。通过预校准的相对空间偏移和刚体运动学关系,计算中心平台的位置与速度,同时采用扩展卡尔曼滤波器(EKF)对中心平台的姿态进行估计。该方法仅依赖机载传感器,无需外部定位设备,因此适用于未知环境。实验验证表明,该方法显著提高了全局定位的准确性,尤其在多飞行器协作任务中表现出色,能够高效地进行信息收集和环境建图。图3 机载状态估计模块的定位数据在这里插入图片描述
图4 建图结果4.PAMPC姿态轨迹校正的主动感知基于视觉约束的姿态轨迹修正算法旨在确保被观测目标始终在IAP机载摄像头的视野内。该算法基于几何PAMPC控制器,通过将SO(3)嵌入到欧几里得空间中构建几何MPC,从而避免了奇异性问题(图5)。并结合离线和在线计算,解决了MPC在实际应用中面临的复杂性和不确定性挑战。该算法结合IAP的全驱动特性,使得IAP成为理想的目标观测平台。在这里插入图片描述
图5 仿真验证PAMPC全局姿态校正算法目标观测实验中,安装在IAP中心平台上的机载相机用于实时观测目标。IAP的期望位置轨迹是一个螺旋形上升轨迹。为了确保连续观察,采用PAMPC姿态校准算法,根据实时视觉反馈调整IAP的姿态指令。实验结果表明,该算法能够使IAP在执行三维螺旋轨迹的同时,保持对目标的观测。与标准四旋翼相比,IAP能够灵活调整其俯仰角,以确保目标在相机视野内(图6)。即使目标移动,IAP也能够及时调整姿态,保持目标在机载相机的视野内(图7)。这些实验表明,IAP的全驱动能力结合所提出的PAMPC姿态校正算法,使其适于执行主动感知目标观测任务。
在这里插入图片描述
图6 IAP和四旋翼飞行器对静态目标观测的对比实验在这里插入图片描述
图7 IAP主动感知动态目标5.IAP与环境接触下的力控制本文中提出了一种基于动力学模型的外部力和力矩估计算法,通过加速度观测器实时估计作用于中心平台的外部力和力矩,并结合离线标定技术消除建模误差和风扰影响。这种方法不仅降低了系统成本,还扩展了IAP在复杂环境中的任务能力。基于上述外部力和力矩估计方法,进一步基于导纳控制思想设计了一种六维力和力矩交互控制器。该控制器通过动态调整参考轨迹以响应外部接触力,确保任务执行的柔顺性和稳定性。此外,针对直接力和力矩控制需求,通过引入选择矩阵实现力和力矩控制与位姿运动控制的解耦,显著提升了系统的任务适应能力。在孔轴装配中(图8),为IAP配备了一个接触轴。实验装置中集成了一个孔,该孔位于倾斜的悬臂末端。应用六维导纳滤波器,根据估计器得到的接触力和力矩值调整期望的位姿轨迹。实验结果表明,在不感知轴孔相对位姿的前提下,IAP能够自动调整其姿态,以成功完成孔轴配合任务。在这里插入图片描述
图8 无外部定位条件、无力传感器情形下,IAP执行相对位姿未知的孔轴配合任务通过直接力和力矩控制验证IAP原型机与环境接触的能力(图9),实验通过固连在IAP中心平台上的接触杆与外部环境接触产生三维接触力和力矩。本文中展示了IAP与受扰动运动环境和非浮动环境接触时,生成独立六维力和力矩的能力,实验结果表明,IAP在两种接触情况下均出色地完成了对给定参考力和力矩值的跟踪,验证了IAP在执行组装、接触式探测和维护等与环境直接接触的任务中的应用潜力。在这里插入图片描述
图9 无外部定位条件、无力传感器情形下,IAP实现与扰动/固定环境物理接触下的六维接触力生成6.结论论文提出了一个仅依赖于机载传感器针对IAP的控制与状态估计框架,其中控制框架由低层位姿运动控制器和高层控制模块构成。高层控制模块包括六维导纳滤波器、直接力和力矩控制器,以及PAMPC姿态校正主动感知,且采用基于加速度的外部力/扭矩估计算法替代传统的力/力矩传感器。此外,状态估计框架采用了一种融合多视觉惯性里程计(VIO)和运动学约束的相对定位算法,显著提升了IAP的定位精度。通过实验验证展示了IAP的多任务能力,包括目标观测和孔轴配合等任务。这项研究解决了无人机在接触任务中面临的重大挑战,并强调了在缺乏外部定位工具的环境中实现自主性的必要性。论文链接:https://ieeexplore.ieee.org/document/10994382

内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值