关于调节样本提升随机森林预测模型准确度和正样本召回率的实例对比
1. 数据预处理
- 数据清洗:处理缺失值、异常值和重复数据,确保数据质量。
- 归一化/标准化:对特征进行归一化或标准化处理,确保特征值在相似的尺度上。
- 类别特征编码:使用独热编码(One-Hot Encoding)或标签编码(Label Encoding)处理类别特征。
- 特征选择:去除不相关或冗余的特征,减少噪声。
2. 特征工程
- 特征构造:根据业务理解构造新的特征,如组合特征、聚合特征等。
- 特征提取:利用PCA(主成分分析)等方法提取重要特征。
- 特征变换:对特征进行非线性变换,如多项式变换,以增加模型的表达能力。
3. 模型参数调优
- 树的数量:增加树的数量通常可以提高模型的稳定性,但需注意过拟合问题。
- 树的深度:调整树的最大深度,过深的树可能导致过拟合,过浅的树可能欠拟合。
- 最小样本数:调整叶子节点和分裂节点的最小样本数,以控制树的复杂度。
- 特征选择数:调整每次分裂时考虑的最大特征数,通常设为特征总数的平方根。
4. 集成学习
- 模型融合:使用不同的机器学习模型进行融合,如梯度提升树(GBDT)、极端梯度提升树(XGBoost)等,与随机森林进行融合。
- Stacking:使用堆叠(Stacking)方法,将多个模型