关于调节样本提升随机森林预测模型准确度和正样本召回率的实例对比

关于调节样本提升随机森林预测模型准确度和正样本召回率的实例对比

1. 数据预处理

  • 数据清洗:处理缺失值、异常值和重复数据,确保数据质量。
  • 归一化/标准化:对特征进行归一化或标准化处理,确保特征值在相似的尺度上。
  • 类别特征编码:使用独热编码(One-Hot Encoding)或标签编码(Label Encoding)处理类别特征。
  • 特征选择:去除不相关或冗余的特征,减少噪声。

2. 特征工程

  • 特征构造:根据业务理解构造新的特征,如组合特征、聚合特征等。
  • 特征提取:利用PCA(主成分分析)等方法提取重要特征。
  • 特征变换:对特征进行非线性变换,如多项式变换,以增加模型的表达能力。

3. 模型参数调优

  • 树的数量:增加树的数量通常可以提高模型的稳定性,但需注意过拟合问题。
  • 树的深度:调整树的最大深度,过深的树可能导致过拟合,过浅的树可能欠拟合。
  • 最小样本数:调整叶子节点和分裂节点的最小样本数,以控制树的复杂度。
  • 特征选择数:调整每次分裂时考虑的最大特征数,通常设为特征总数的平方根。

4. 集成学习

  • 模型融合:使用不同的机器学习模型进行融合,如梯度提升树(GBDT)、极端梯度提升树(XGBoost)等,与随机森林进行融合。
  • Stacking:使用堆叠(Stacking)方法,将多个模型
### 计算准确度、精确度召回率 #### 准确度 (Accuracy) 准确度是指所有预测样本中分类正确的比例。其计算公式如下: \[ \text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{FP} + \text{FN} + \text{TN}} \] 其中: - TP (True Positive): 正类被正确识别的数量 - TN (True Negative): 负类被正确识别的数量 - FP (False Positive): 实际为负类却被错误地标记为正类的数量 - FN (False Negative): 实际为正类却被错误地标记为负类的数量 ```python def calculate_accuracy(tp, tn, fp, fn): accuracy = (tp + tn) / (tp + tn + fp + fn) return accuracy ``` #### 精确度 (Precision) 精确度衡量的是模型对于正类别的预测准确性,即所有预测为正类的实例中有多少确实是正类。 \[ \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \] ```python def calculate_precision(tp, fp): precision = tp / (tp + fp) return precision ``` #### 召回率 (Recall) 召回率表示实际为正类的数据点中有多少被成功检测出来,也称为敏感性或真正率。 \[ \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \] ```python def calculate_recall(tp, fn): recall = tp / (tp + fn) return recall ``` 假设有一个二元分类器的结果如下表所示: | 类别 | 预测结果 | | --- | ------- | | 正类 | 80 | | 负类 | 20 | 以及混淆矩阵数据如下: | | 预测为正 | 预测为负 | | ------ | -------- | -------- | | **真实为正** | 70 | 10 | | **真实为负** | 5 | 15 | 那么可以得到: - TP = 70 - TN = 15 - FP = 5 - FN = 10 代入上述函数可得具体的数值[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金融街小单纯

在线赚猫粮~喵~喵~喵~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值