【C++学习】红黑树

目录

一、红黑树的概念

二、红黑树的性质      

三、红黑树节点的定义

四、红黑树的结构

五、红黑树的插入操作

5.1 按照二叉搜索的树规则插入新节点

5.2 检测新节点插入后,红黑树的性质是否造到破坏  

5.2.1 情况一:cur为红,p为红,g为黑,u存在且为红

5.2.2 情况二:cur为红,p为红,g为黑,u不存在/u存在且为黑

六、红黑树的验证

七、红黑树模拟实现STL中的map与set

7.1 红黑树的迭代器

7.2 改造红黑树

7.3 map的模拟实现

7.4 set的模拟实现


一、红黑树的概念

        红黑树,是一种 二叉搜索树 ,但 在每个结点上增加一个存储位表示结点的颜色,可以是 Red或B lack 。 通过对 任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径 会比其他路径长出俩倍 ,因而是 接近平衡 的。

二、红黑树的性质      

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的 
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点 
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

三、红黑树节点的定义

// 节点的颜色
enum Color{RED, BLACK};

// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
    RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
        : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
        , _data(data), _color(color)
    {}

    RBTreeNode<ValueType>* _pLeft;   // 节点的左孩子
    RBTreeNode<ValueType>* _pRight;  // 节点的右孩子
    RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
    ValueType _data;            // 节点的值域
    Color _color;               // 节点的颜色
};

四、红黑树的结构

        为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点, pLeft域指向红黑树中最小的节点,_pRight 域指向红黑树中最大的节点,如下:

五、红黑树的插入操作

        红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

5.1 按照二叉搜索的树规则插入新节点

template<class ValueType>
class RBTree
{
    //……
    bool Insert(const ValueType& data)
    {
        PNode& pRoot = GetRoot();
        if (nullptr == pRoot)
        {
            pRoot = new Node(data, BLACK);

            // 根的双亲为头节点
            pRoot->_pParent = _pHead;
            _pHead->_pParent = pRoot;
        }
        else
        {
             // 1. 按照二叉搜索的树方式插入新节点
             // 2. 检测新节点插入后,红黑树的性质是否造到破坏,
             //   若满足直接退出,否则对红黑树进行旋转着色处理
        }

        // 根节点的颜色可能被修改,将其改回黑色
        pRoot->_color = BLACK;
        _pHead->_pLeft = LeftMost();
        _pHead->_pRight = RightMost();
        return true;
    }

private:
    PNode& GetRoot(){ return _pHead->_pParent; }

    // 获取红黑树中最小节点,即最左侧节点
    PNode LeftMost();

    // 获取红黑树中最大节点,即最右侧节点
    PNode RightMost();

private:
    PNode _pHead;
};

5.2 检测新节点插入后,红黑树的性质是否造到破坏  

        因为新节点的默认颜色是红色 ,因此:如果 其双亲节点的颜色是黑色,没有违反红黑树任何 性质 ,则不需要调整;但 当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点 ,此时需要对红黑树分情况来讨论:

        约定:cur为当前节点,p为父节点,g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cassooo_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值