每日一题——Python实现PAT甲级1041 Be Unique(举一反三+思想解读+逐步优化)


一个认为一切根源都是“自己不够强”的INTJ

个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数

Python-3.12.0文档解读

目录

我的写法

代码点评

时间复杂度分析

空间复杂度分析

总结

我要更强

方法1:一次遍历,使用数组模拟哈希表

方法2:双哈希表优化

方法3:使用有序字典

优化分析

小结

哲学和编程思想

1. 时间和空间权衡(Time-Space Tradeoff)

2. 单一职责原则(Single Responsibility Principle)

3. 最小化遍历次数(Minimizing Passes Over Data)

4. 哈希表和数组的使用(Hash Tables and Arrays)

5. 顺序保持(Order Preservation)

6. 空间优化(Space Optimization)

7. 提前退出(Early Exit)

具体方法中的编程思想应用总结:

举一反三

1. 理解问题和数据特性

2. 选择合适的数据结构

3. 最小化遍历次数

4. 空间优化

5. 单一职责原则

6. 时空权衡

7. 算法思想

举一反三技巧:

技巧1:模式识别

技巧2:优化现有算法

技巧3:保持代码可读性和可维护性

实例应用:

分析问题:

选择数据结构:

设计算法:

优化和测试:


 题目链接


我的写法

 

import sys  # 导入sys模块,用于退出程序

# 从标准输入读取一行,并将其转换为整数列表
# 首先分割输入的字符串,使用map函数将每个分割的部分转换为整数,然后再转换为列表
N_nums = list(map(int, input().split()))

# 取出列表的第一个元素,作为N值
N = N_nums[0]

# 取出列表中除第一个元素外的所有元素,作为新的列表
N_nums = N_nums[1:]

# 初始化一个空字典,用于记录每个数字出现的次数
is_unique = {}

# 遍历N_nums列表中的每个数字
for num in N_nums:
    # 检查当前数字是否在字典中
    if is_unique.get(num, None):
        # 如果数字已经在字典中,次数加1
        is_unique[num] += 1
    else:
        # 如果数字不在字典中,将其加入字典,并初始化次数为1
        is_unique[num] = 1

# 遍历字典中的每个键值对
for k, v in is_unique.items():
    # 检查当前键的值是否为1(即该数字只出现了一次)
    if v == 1:
        # 如果找到一个只出现了一次的数字,打印该数字,并退出程序
        print(f"{k}")
        sys.exit(0)

# 如果没有找到只出现一次的数字,打印"None"
print("None")

这段代码的功能是查找并输出一组整数中第一个只出现一次的数字。如果没有找到这样的数字,则输出"None"。以下是对这段代码的点评以及时间复杂度和空间复杂度的分析:

代码点评

  1. 输入处理:
    • N_nums = list(map(int, input().split())) 这一行实现了从标准输入读取一行并将其转换为整数列表。这种处理方式简洁有效。
    • N = N_nums[0] 取出列表的第一个元素作为N值,N_nums = N_nums[1:] 这一行将列表中除第一个元素外的所有元素提取出来。
  2. 统计数字出现次数:
    • 使用一个字典 is_unique 来记录每个数字出现的次数。这种方法非常直观且有效。
    • if is_unique.get(num, None): 这一行可以简化为 if num in is_unique:,这样更清晰一些。
  3. 查找目标数字:
    • 遍历字典 is_unique 来查找第一个只出现一次的数字,并使用 sys.exit(0) 提前退出程序。这种方法在找到目标后立即退出,避免了不必要的遍历。
  4. 输出结果:
  • 如果没有找到只出现一次的数字,程序会输出 "None"。

时间复杂度分析

  1. 输入处理:
    • list(map(int, input().split())):这行代码的时间复杂度为 O(N),其中 N 是输入数字的个数。
  2. 统计数字出现次数:
    • for num in N_nums::这一循环的时间复杂度为 O(N),因为我们需要遍历所有的数字。
    • is_unique.get(num, None) 和 is_unique[num] = 1 等操作在字典中的查找和插入操作平均时间复杂度为 O(1),所以整个循环的时间复杂度为 O(N)。
  3. 查找目标数字:
  • for k, v in is_unique.items()::这一循环的时间复杂度为 O(U),其中 U 是字典中不同数字的个数。由于最多有 N 个不同的数字,最坏情况下 U 为 N,因此最坏情况下这一部分的时间复杂度为 O(N)。

综合起来,整个程序的时间复杂度为 O(N)。

空间复杂度分析

  1. 输入处理:
    • N_nums 列表的空间复杂度为 O(N)。
  2. 统计数字出现次数:
  • is_unique 字典的空间复杂度为 O(U),其中 U 是不同数字的个数。最坏情况下 U 为 N,因此空间复杂度为 O(N)。

综合起来,整个程序的空间复杂度为 O(N)。

总结

这段代码在实现上是高效且易于理解的。时间复杂度和空间复杂度均为 O(N),很适合处理大量数据。在优化方面,可以将 if is_unique.get(num, None): 改为 if num in is_unique:,使代码更加清晰。总体来说,这段代码在性能和可读性上都表现良好。


我要更强

要优化这个问题,主要的思路是尝试减少对输入列表的多次遍历和对数据的额外存储。下面是一些可能的改进方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

用哲学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值