一个认为一切根源都是“自己不够强”的INTJ
个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数
目录
1. 时间和空间权衡(Time-Space Tradeoff)
2. 单一职责原则(Single Responsibility Principle)
3. 最小化遍历次数(Minimizing Passes Over Data)
4. 哈希表和数组的使用(Hash Tables and Arrays)
我的写法
import sys # 导入sys模块,用于退出程序
# 从标准输入读取一行,并将其转换为整数列表
# 首先分割输入的字符串,使用map函数将每个分割的部分转换为整数,然后再转换为列表
N_nums = list(map(int, input().split()))
# 取出列表的第一个元素,作为N值
N = N_nums[0]
# 取出列表中除第一个元素外的所有元素,作为新的列表
N_nums = N_nums[1:]
# 初始化一个空字典,用于记录每个数字出现的次数
is_unique = {}
# 遍历N_nums列表中的每个数字
for num in N_nums:
# 检查当前数字是否在字典中
if is_unique.get(num, None):
# 如果数字已经在字典中,次数加1
is_unique[num] += 1
else:
# 如果数字不在字典中,将其加入字典,并初始化次数为1
is_unique[num] = 1
# 遍历字典中的每个键值对
for k, v in is_unique.items():
# 检查当前键的值是否为1(即该数字只出现了一次)
if v == 1:
# 如果找到一个只出现了一次的数字,打印该数字,并退出程序
print(f"{k}")
sys.exit(0)
# 如果没有找到只出现一次的数字,打印"None"
print("None")
这段代码的功能是查找并输出一组整数中第一个只出现一次的数字。如果没有找到这样的数字,则输出"None"。以下是对这段代码的点评以及时间复杂度和空间复杂度的分析:
代码点评
- 输入处理:
- N_nums = list(map(int, input().split())) 这一行实现了从标准输入读取一行并将其转换为整数列表。这种处理方式简洁有效。
- N = N_nums[0] 取出列表的第一个元素作为N值,N_nums = N_nums[1:] 这一行将列表中除第一个元素外的所有元素提取出来。
- 统计数字出现次数:
- 使用一个字典 is_unique 来记录每个数字出现的次数。这种方法非常直观且有效。
- if is_unique.get(num, None): 这一行可以简化为 if num in is_unique:,这样更清晰一些。
- 查找目标数字:
- 遍历字典 is_unique 来查找第一个只出现一次的数字,并使用 sys.exit(0) 提前退出程序。这种方法在找到目标后立即退出,避免了不必要的遍历。
- 输出结果:
- 如果没有找到只出现一次的数字,程序会输出 "None"。
时间复杂度分析
- 输入处理:
- list(map(int, input().split())):这行代码的时间复杂度为 O(N),其中 N 是输入数字的个数。
- 统计数字出现次数:
- for num in N_nums::这一循环的时间复杂度为 O(N),因为我们需要遍历所有的数字。
- is_unique.get(num, None) 和 is_unique[num] = 1 等操作在字典中的查找和插入操作平均时间复杂度为 O(1),所以整个循环的时间复杂度为 O(N)。
- 查找目标数字:
- for k, v in is_unique.items()::这一循环的时间复杂度为 O(U),其中 U 是字典中不同数字的个数。由于最多有 N 个不同的数字,最坏情况下 U 为 N,因此最坏情况下这一部分的时间复杂度为 O(N)。
综合起来,整个程序的时间复杂度为 O(N)。
空间复杂度分析
- 输入处理:
- N_nums 列表的空间复杂度为 O(N)。
- 统计数字出现次数:
- is_unique 字典的空间复杂度为 O(U),其中 U 是不同数字的个数。最坏情况下 U 为 N,因此空间复杂度为 O(N)。
综合起来,整个程序的空间复杂度为 O(N)。
总结
这段代码在实现上是高效且易于理解的。时间复杂度和空间复杂度均为 O(N),很适合处理大量数据。在优化方面,可以将 if is_unique.get(num, None): 改为 if num in is_unique:,使代码更加清晰。总体来说,这段代码在性能和可读性上都表现良好。
我要更强
要优化这个问题,主要的思路是尝试减少对输入列表的多次遍历和对数据的额外存储。下面是一些可能的改进方法: