
深度学习
文章平均质量分 51
王摇摆
办法总比困难多
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【深度学习】求解偏导数
很多思路和方法都是用已知的方法去解决未知的问题定义一个x1=4的函数对只有变量x0的函数用求微分两个临时变式函数写出来# 对0求偏导的函数的临时函数 def function_tmp0(x0) : # x是变量,另一个不重要的变量已经固定好了 return x0 ** 2 + 4 ** 2 # 对1求偏导的函数的临时函数 def function_tmp1(x1) : return 3 ** 2 + x1 ** 2。原创 2022-11-29 16:57:29 · 950 阅读 · 0 评论 -
深度学习中的数值微分(梯度)
就是用数值方法近似求解函数的导数的过程。原创 2022-11-28 21:47:27 · 305 阅读 · 0 评论 -
mini_batch学习
如何得到所有学习数据的损失函数的总和太难受了吧。原创 2022-11-28 17:32:24 · 546 阅读 · 0 评论 -
损失函数_交叉熵函数
的加入,可以避免np.log变为负的无穷大。很多时候还是要尽可能的避免这种问题。通过一些方法技巧来做到规避问题。原创 2022-11-28 16:28:40 · 230 阅读 · 0 评论 -
损失函数_均方误差
以某个指标为线索寻找最优权重参数损失函数可以是任意函数。原创 2022-11-28 14:51:36 · 849 阅读 · 0 评论 -
Numpy数组中的维度和轴
m维行向量n维列向量m维向量很多梳理默认的向量是列向量。原创 2022-11-26 09:45:15 · 2147 阅读 · 0 评论 -
【Python】深入理解NumPy数组中的一维向量
Numpy中的数组shape为(m,)说明它是一个一维数组,或者说是一个向量所以说,无须纠结得到的一维数组是行向量还是列向量,或者说一维数组在用户看来就没有行列之分,其行列的不同在Python计算时会自动进行处理。原创 2022-11-26 09:26:02 · 1995 阅读 · 0 评论 -
【神经网络】批处理的使用
在神经网络中的分类问题中输出层中的神经元的数量设置为要分类的类别数。原创 2022-11-25 17:32:18 · 266 阅读 · 0 评论 -
【深度学习】手写数字识别
学习。原创 2022-11-25 16:37:18 · 389 阅读 · 0 评论 -
神经网络输出层的设计
因为softmax函数的输出值中第二个元素的概率最高,所以答案是第2个类别。在python中我们把它定义为python中的函数。用学到的模型对未知的数据进行推理或者分类。需要根据解决问题的规模来决定。原创 2022-11-25 14:57:01 · 333 阅读 · 0 评论 -
多维数组的运算和3层神经网络的实现
矩阵的乘法完全可以实现。同样也可以使用矩阵乘以一个向量来进行运算向量:一维矩阵。原创 2022-11-17 08:29:04 · 356 阅读 · 0 评论 -
感知机的局限性
XOR门电路注意,门电路的输入只能是0或者1异或:拒绝其他的意思。原创 2022-11-17 08:28:24 · 595 阅读 · 0 评论 -
感知机的认识和简单的实现
权重参数的值表示的是输入信号的重要性偏置表示神经元被激活的容易程度。原创 2022-11-17 08:28:26 · 149 阅读 · 0 评论 -
从感知机到神经网络
将输入信号的总和转换为输出信号输入:输入信号的加权总和激活函数:h(a)计算得到结果可以在神经元内部中明确的显示出激活函数的激活过程激活函数是连接感知机和神经网络的桥梁函数输入大于0时,直接输出该值否则输出0。原创 2022-11-17 08:28:35 · 190 阅读 · 0 评论 -
NumPy的N维数组
广播运算的时候标量10倍当做2x2的矩阵来计算。矩阵的乘法只是对应位置元素相乘而已。原创 2022-11-16 10:46:53 · 554 阅读 · 0 评论 -
深度学习必备Python基础知识充电2
第一个name表示方法形参name第二个表示的是实例变量名name二者注意区分理解。原创 2022-11-16 09:38:45 · 327 阅读 · 0 评论 -
深度学习必备Python基础知识充电1
也被称之为就是进行人机交互。原创 2022-11-16 09:18:15 · 462 阅读 · 0 评论 -
深度学习入门
通过学习深度学习的过程,逼近深度学习的本质。原创 2022-11-14 21:23:37 · 115 阅读 · 0 评论 -
DataLoader的使用1
使用方法:transformand。原创 2022-11-11 19:14:57 · 314 阅读 · 0 评论 -
torchvision中数据集的使用
这里可以看到img,和target 的值是获取到了训练集中这个大类中对应的目标值。在官网中寻找自己想要的东西和答案。如何使用writer进行输出?原创 2022-11-11 10:37:43 · 547 阅读 · 0 评论 -
常见的Transforms(二)RandomCrop
关注输入输出类型多看官方文档(最原生的东西)关注方法需要什么参数。原创 2022-11-07 17:48:20 · 502 阅读 · 0 评论 -
常见的Transforms(二)(Resize)
后面参数的需要的输入。原创 2022-11-07 16:39:32 · 587 阅读 · 0 评论 -
常见的Transforms(一)Compose & Normalize
其实就是更好的使用transform中各种各样的类。原创 2022-11-07 16:34:50 · 761 阅读 · 0 评论 -
Transforms的使用2(ToTensor类)
关键参数将数据转换成tensor型,进行数据训练安装openvc运用函数库中的方法后发亮的东西表示的是必填的东西在实例化的过程中,注意使用的东西是什么?最好的结果就是没结果原创 2022-11-07 14:27:17 · 912 阅读 · 0 评论 -
Transforms的使用1(ToTensor)
对图像进行转换。原创 2022-11-07 09:01:01 · 906 阅读 · 0 评论 -
TensorBoard的使用2(add_image函数)
函数参数需要的是tensor类型的数据,如何把pil,jpegimage类型的数据要转换成为能用的数据类型。在该页面中可以拖动step来查看不同的step对应的图片。通过这样的方式获得函数所需要的数据类型。传递参数的过程中参数不要写死。出现上面内容证明已经安装好了。原创 2022-11-06 17:46:10 · 3128 阅读 · 0 评论 -
TensorBoard的使用1(add_scalar函数)
TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库Tensorflow一开始只能在tensorflow中使用。原创 2022-11-06 11:39:24 · 1008 阅读 · 0 评论 -
Dataset类代码实战
import os。原创 2022-11-06 10:26:56 · 622 阅读 · 0 评论 -
Pytorch加载数据初认识
在pytorch中加载数据的时候,有两个重要类。原创 2022-11-05 21:38:15 · 346 阅读 · 0 评论 -
Pycharm和Jupyter的对比
代码是以块为一个整体运行的话IDE的块是所有航的代码通用,传播方便,适用于大型项目需要从头运行console的块是以每一行为块运行的调试的时候用的多可以显示每个变量属性不利于代码的修改和阅读也可以以任意行为块进行运行修改错误很麻烦,还需要重新输入一遍,或者是按上方向键重新修改更多用于单行作用,调试的时候用的多jupyter是以任意行为块运行的代码的阅读性好方便进行修改环境需要进行配置希望根据实际情况选择需要使用,穿插使用。原创 2022-11-05 15:52:00 · 8497 阅读 · 0 评论 -
Python中的两大法宝函数
在控制面板中的设备管理器查看自己的显卡,集显。原创 2022-11-05 15:15:07 · 419 阅读 · 0 评论 -
Python编辑器的选择配置和使用
在anaconda中pytorch环境中去安装jupyter。anaconda安装好了后jupyter就已经安装好了。安装pycharm后选择已经存在的anaconda环境。代码随时可以更改,更直观的运行。原创 2022-11-05 11:04:24 · 611 阅读 · 0 评论 -
pytorch环境安装和配置
安装好了anaconda,就安装好了各种package。在命令行中输入python,进入python环境。有没有显卡对于是否能学习pytorch没有影响。package:表示pytorch的安装方式。在页面确认一下显卡是不是支持conda。选择annaconda3 5.2.0。在命令行中看到base则表示安装成功。有英伟达显卡,推荐使用9.2的版本。看看python中的工具包。看看自己电脑的GPU型号。done表示安装成功。1.3 使用这个版本。原创 2022-11-04 21:56:06 · 564 阅读 · 0 评论