
概率论与数理统计
王摇摆
办法总比困难多
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
先验概率和后验概率
例如,我们可能认为罐子中有50%的概率是红球,50%的概率是蓝球。后验概率是指在考虑到新的观察数据或证据后,我们对事件或假设的概率进行更新或修正的概率。先验概率是指在考虑任何新信息或数据之前,我们对事件或假设的概率的初始信念或估计。简而言之,先验概率是基于先前的信念或经验得出的概率,而后验概率是在考虑到新的观察数据后更新的概率。后验概率通过将先验概率与新的证据结合起来,提供了更准确的概率估计。换句话说,先验概率是我们在考虑到任何新信息之前对事件的初始信念,而后验概率是在考虑到新的观察数据后更新的概率。原创 2023-05-21 09:11:58 · 850 阅读 · 0 评论 -
em算法?
它是一种常用的迭代优化算法,用于在存在隐含变量的概率模型中进行参数估计。在E步骤中,根据当前参数的估计值,计算隐含变量的后验概率,即给定观测数据的条件下,隐含变量的概率分布。在M步骤中,根据E步骤得到的隐含变量的后验概率,通过最大化完整数据的对数似然函数来更新参数的估计值。通过交替进行E步骤和M步骤的迭代,EM算法逐渐优化参数的估计值,直到达到收敛条件为止。总结来说,EM算法是一种迭代优化算法,用于在存在隐含变量的概率模型中进行参数估计。原创 2023-05-21 09:06:14 · 97 阅读 · 0 评论