pandas读写表格

本文主要介绍了如何利用Python的pandas库进行数据表格的读取和写入操作,包括CSV、Excel等常见格式,是数据分析工作中的基础技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                第三节:

一、用pandas对于表格的读写操作

    1、对于CSV格式文件的写入:

        (1)使用函数to_csv函数
            import pandas as pd
            df=pd.DataFrame(data=数据)————生成一个DataFrame对象
            df.to_csv(path_or_buf="文件名.csv",encoding="utf_8_sig",index=True)

            注:to_csv函数中的path_or_buf是写入的CSV文件的路径以及名称
                encoding指的是编码格式,可以设置为utf_8_sig,防止出现乱码
                index指的是索引,默认值是True,即写入文件的时候写入索引值,如果不想写入索引的话直接赋值为False

    2、对于CSV格式文件的读取:

        (1)使用read_csv函数
            import pandas as pd
            df=pd.read_csv(文件路径,header=0)

            注:读取出来的就是DataFrame格式的数据,其中的文件路径指的是需要读取的文件路径,可以写相对路径或者
                绝对路径都可以的,header指的是选定指定的行数据作为列索引,默认值为0,即第一行作为列索引,
                如果没有合适的行作为列索引的话,可以把header默认值修改为None,这样列索引就是0,1,2,3这样的数字
            当指定了header的值,读出来的数据就是从该行开始向下切片,该行以上的数据会被忽略。
    3、对于Excel格式文件的写入
         (1)使用to_excel函数
            import pandas  as pd
            df=pd.DataFrame(data=数据)————生成一个DataFrame对象
            df.to_excel(写入文件路径)
         (2)写入多个sheet表          with pd.ExcelWriter("./Data/数据2.xlsx") as writer:
              DataFrame对象1.to_excel(writer,sheet_name="sheet1",index=False)
              DataFrame对象2.to_excel(writer,sheet_name="sheet2",index=False)
              DataFrame对象3.to_excel(writer,sheet_name="sheet3",index=False)    4、对于Excel格式文件的读取:             
   
        (1)使用read_excel函数
            import pandas as pd
            sheet = pd.read_excel('/data/course_data/data_analysis/sheet.xlsx',sheet_name="sheet表名")
            print(sheet.head())

                                总结 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值