第三节: 一、用pandas对于表格的读写操作 1、对于CSV格式文件的写入: (1)使用函数to_csv函数 import pandas as pd df=pd.DataFrame(data=数据)————生成一个DataFrame对象 df.to_csv(path_or_buf="文件名.csv",encoding="utf_8_sig",index=True) 注:to_csv函数中的path_or_buf是写入的CSV文件的路径以及名称 encoding指的是编码格式,可以设置为utf_8_sig,防止出现乱码 index指的是索引,默认值是True,即写入文件的时候写入索引值,如果不想写入索引的话直接赋值为False 2、对于CSV格式文件的读取: (1)使用read_csv函数 import pandas as pd df=pd.read_csv(文件路径,header=0) 注:读取出来的就是DataFrame格式的数据,其中的文件路径指的是需要读取的文件路径,可以写相对路径或者 绝对路径都可以的,header指的是选定指定的行数据作为列索引,默认值为0,即第一行作为列索引, 如果没有合适的行作为列索引的话,可以把header默认值修改为None,这样列索引就是0,1,2,3这样的数字 当指定了header的值,读出来的数据就是从该行开始向下切片,该行以上的数据会被忽略。 3、对于Excel格式文件的写入 (1)使用to_excel函数 import pandas as pd df=pd.DataFrame(data=数据)————生成一个DataFrame对象 df.to_excel(写入文件路径) (2)写入多个sheet表
with pd.ExcelWriter("./Data/数据2.xlsx") as writer: DataFrame对象1.to_excel(writer,sheet_name="sheet1",index=False) DataFrame对象2.to_excel(writer,sheet_name="sheet2",index=False) DataFrame对象3.to_excel(writer,sheet_name="sheet3",index=False)
4、对于Excel格式文件的读取: (1)使用read_excel函数 import pandas as pd sheet = pd.read_excel('/data/course_data/data_analysis/sheet.xlsx',sheet_name="sheet表名") print(sheet.head())
总结