给数据分个班
1、对数据进行分组
单列分组
Pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作
而进行分组之后是一个DataFrameGroupBy object,是一个分组后的对象
df.groupby("gender")
但是因为分组之后是一个DataFrameGroupBy object对象,所以可以使用groupby中的size方法查看分组后每组的
数量,并返回一个含有分组大小的Series:
df.groupby("gender").size()
同样我们也可以根据某一个列名对另外一个列进行分组,之后使用get_group()函数根据分组后的名字进行分组,例如:
我们通过性别gender,只对age列数据进行分组
group = df['age'].groupby(df['gender'])
# 查看分组
print(group.groups)
# 根据分组后的名字选择分组
print(group.get_group('F'))
对分组之后的数据进行遍历:
import pandas as pd
df = pd.read_excel('/data/course_data/data_analysis/forbes_2018.xlsx')
groups = df.groupby('gender')
for group_name,group_df in groups:
print(group_name,group_df.shape)
多列分组
在pandas中对于数据进行分组可以实现多列分组,当需要按多列进行分组的时候,gro
数据的分组以及统计
最新推荐文章于 2022-05-17 20:03:58 发布