数据的分组以及统计

本文探讨了如何对数据进行有效的分组操作,以便进行深入的统计分析。通过实例展示了如何利用统计方法如平均值、中位数和众数来揭示数据的内在规律。通过对不同数据集的分组对比,揭示了数据间的关联性和差异性,为决策提供有力支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                            给数据分个班

1、对数据进行分组
    单列分组
        Pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作
        而进行分组之后是一个DataFrameGroupBy object,是一个分组后的对象
            df.groupby("gender")

        但是因为分组之后是一个DataFrameGroupBy object对象,所以可以使用groupby中的size方法查看分组后每组的
        数量,并返回一个含有分组大小的Series:
            df.groupby("gender").size()

        同样我们也可以根据某一个列名对另外一个列进行分组,之后使用get_group()函数根据分组后的名字进行分组,例如:
            我们通过性别gender,只对age列数据进行分组
            group = df['age'].groupby(df['gender'])
            # 查看分组
            print(group.groups)
            # 根据分组后的名字选择分组
            print(group.get_group('F'))

        对分组之后的数据进行遍历:
            import pandas as pd
            df = pd.read_excel('/data/course_data/data_analysis/forbes_2018.xlsx')
            groups = df.groupby('gender')
            for group_name,group_df in groups:
                print(group_name,group_df.shape)
    多列分组
        在pandas中对于数据进行分组可以实现多列分组,当需要按多列进行分组的时候,gro
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值