RAG调查
论文:Retrieval-Augmented Generation for Large Language Models: A Survey大型语言模型的检索增强生成:一项调查
链接:https://arxiv.org/abs/2312.10997
Official Code:https://github.com/tongji-kgllm/rag-survey
Graph RAG之前的Na ̈ıve RAG 朴素RAG:
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., and Wang, H. (2023). Retrieval-
augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997.
高倩,Y.,熊倩,Y.,高 X.,贾,K.,潘,J.,毕,Y.,戴,Y.,孙,J. 和王,H.(2023)。大型语言模型的检索增强生成:一项调查。arXiv 预印本 arXiv:2312.10997。
主要内容
“Retrieval-Augmented Generation for Large Language Models: A Survey” 这篇综述论文全面探讨了检索增强生成(RAG)技术,涵盖其发展历程、技术框架、应用任务、评估方法以及面临的挑战与未来方向,为读者深入理解 RAG 在大语言模型中的作用提供了详尽参考。
图1。RAG研究的技术树。涉及RAG的阶段主要包括预训练、微调和推理。随着LLM的出现,对RAG的研究最初集中在利用LLM强大的上下文学习能力上,主要集中在推理阶段。随后的研究更加深入,逐渐与LLM的微调相结合。研究人员还一直在探索通过检索增强技术在预训练阶段增强语言模型的方法。
-
引言
- 大型语言模型(LLMs)虽取得显著成就,但在特定领域或知识密集型任务中存在局限性,如产生幻觉等。检索增强生成(RAG)通过从外部知识库检索相关文档块来增强 LLMs,有效减少错误内容生成,已成为关键技术。
- RAG 技术发展迅速,经历了与 Transformer 架构兴起相关的早期阶段、ChatGPT 出现后的快速发展阶段,其研究从关注预训练逐渐深入到与 LLM 微调技术融合。
- 本文贡献包括系统回顾 RAG 方法、剖析其核心组件、总结评估方法以及展望未来发展方向。