Paper Title: A deep learning model for brain age prediction using minimally preprocessed T1w images as input Code 1. 引言 研究背景 个体的生物年龄(biological age)与实际年龄(chronological age)可能不同; 大脑中各种与年龄相关的变化与几种神经退行性疾病的发展密切相关,包括AD和血管性痴呆; 以往研究大都涉及多个预处理步骤; 研究基础 模型的训练取决于训练数据的选择,理想的数据集应该包括: 被试的详细信息和临床数据,以便尽可能全面符合标准; 大量