Frontiers in Aging Neuroscience - 2024 以T1w为输入的深度学习脑龄预测模型

image-20250417144731533

Paper Title: A deep learning model for brain age prediction using minimally preprocessed T1w images as input

Code

1. 引言

  • 研究背景

    • 个体的生物年龄(biological age)与实际年龄(chronological age)可能不同;
    • 大脑中各种与年龄相关的变化与几种神经退行性疾病的发展密切相关,包括AD和血管性痴呆;
    • 以往研究大都涉及多个预处理步骤;
  • 研究基础

    模型的训练取决于训练数据的选择,理想的数据集应该包括:

    • 被试的详细信息和临床数据,以便尽可能全面符合标准;
    • 大量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ChinaSuperLeon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值