
论文笔记
文章平均质量分 95
如果你对人工智能在医学领域的应用感兴趣,那么就来关注我的专栏叭。我会经常分享一些AI在医学领域应用的最新论文的独家阅读笔记和思考感悟,这些内容包括但不限于CT、MRI等图像的分割、分类、超分辨率、降噪等。
ChinaSuperLeon
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Information Fusion - 2023 基于DL的脑龄预测综述
Information Fusion - 2023 基于DL的脑龄预测综述原创 2025-04-18 10:18:44 · 48 阅读 · 0 评论 -
Frontiers in Aging Neuroscience - 2024 以T1w为输入的深度学习脑龄预测模型
Frontiers in Aging Neuroscience - 2024 以T1w为输入的深度学习脑龄预测模型原创 2025-04-17 14:51:03 · 53 阅读 · 0 评论 -
Brain - 2020 DeepBrainNet
Brain - 2020 DeepBrainNet原创 2025-04-16 17:56:27 · 66 阅读 · 0 评论 -
TMI - 2024 医学图像自动分割和分类的多任务注意力网络
TMI - 2024 医学图像自动分割和分类的多任务注意力网络原创 2025-04-15 14:26:53 · 149 阅读 · 0 评论 -
利用深度学习对医学图像去噪的最新进展:模型、技术和挑战概述
利用深度学习对医学图像去噪综述阅读笔记原创 2025-04-05 22:07:29 · 137 阅读 · 0 评论 -
nnU-Net:基于U-Net的医学图像分割自适应框架
nnU-Net论文阅读笔记原创 2025-04-05 20:11:11 · 174 阅读 · 0 评论 -
Arxiv 2017 - Transformer Attention is all you need
Arxiv 2017 - Transformer Attention is all you need原创 2024-11-18 16:18:22 · 185 阅读 · 0 评论 -
Arxiv 2023 - 基于Swin Transformers的广义dMRI降噪与超分辨率
Arxiv 2023 - 基于Swin Transformers的广义dMRI降噪与超分辨率原创 2024-11-11 16:07:40 · 501 阅读 · 0 评论 -
IEEE Access 2022 - EMCA 有效的多尺度通道注意力模块
图1描述了一般通道注意范式的简要概述,其中任意卷积层首先被输入到上下文建模模块,以挤压空间维度(H × W),然后是转换模块,旨在学习通道 C 之间的相关性,最后根据每个通道的重要性因子对其进行加权。为了提取更多的图像特征,出现了堆叠多个卷积层的深层框架,称为backbone或encoder(编码器),这种框架的优点是可以覆盖多个尺度的空间特征。为了回答这个问题,我们引入了一种新的基于通道注意的特征再校准模块EMCA,它利用全局信息来提高网络产生的特征的质量,强调有用的特征,选择性地抑制不太有用的特征。原创 2024-11-08 17:42:01 · 414 阅读 · 0 评论 -
JRMI 2019 - 基于联合去噪卷积神经网络的高场磁共振扩散加权图像去噪
原文的描述(部分):训练去噪网络最常用的方法之一是通过向具有假设噪声模式(例如,一定分布和噪声水平)的高质量图像添加噪声来生成训练数据对。由于具有不同b值的DWI图像通常具有高度相关的边缘和可以由神经网络自身提取的结构信息,因此本文提出了JD-CNN模型,并尝试以联合方式训练具有多个输入通道的网络。为了评估JD-CNN去噪DWI的性能,在高SNR图像上模拟了不同程度的噪声。用来平衡训练损失和稀疏项之间的权衡(本文设置为0.3),N表示训练数据的个数,x和y分别指无噪数据和观测数据,F指的是模型降噪过程。原创 2024-11-08 17:11:43 · 92 阅读 · 0 评论 -
ECCV 2018 - CBAM 卷积块注意模块
CBAM 包含2个独立的子模块, 通道注意力模块(Channel Attention Module,CAM) 和空间注意力模块(Spartial Attention Module,SAM) ,分别进行通道与空间上的 Attention。此外,作者认为最大池化收集了另一条重要线索,即关于独特物体特征的线索,从而推断出更精细的通道注意力。AvgPool(F)、MaxPool(F)分别经过MLP处理,得到MLP(AvgPool(F))、MLP(MaxPool(F));,与通道注意是互补的。原创 2024-11-06 18:17:39 · 626 阅读 · 0 评论 -
PMB 2024 - MFCA-MICNN一种基于多尺度快速通道注意力机制和多分支不规则卷积的用于dMRI降噪的CNN
Paper Title: MFCA-MICNN: a convolutional neural network with multiscale fast channel attention and multibranch irregular convolution for noise removal in dMRI创新点引入多尺度快速通道注意力;通过计算特征通道上的注意力权重来高效提取多尺度特征;提出一种多分支不规则卷积结构;有效破坏空间噪声相关性,并捕获了噪声特征,从而进一步提高模型的降噪性能;原创 2024-11-04 14:36:03 · 548 阅读 · 0 评论 -
CMIG 2022 - 2.5D方法在医学图像分割中的应用
作者将2.5D分割方法分为三大类:多视图融合、整合slice间信息、融合2D/3D特征。原创 2024-10-28 18:01:08 · 1207 阅读 · 0 评论