人工智能第2版学习——人工智能中的不确定性

这篇博客介绍了人工智能第二版的学习内容,主要涉及模糊集、模糊逻辑、模糊推理和概率理论。模糊集包括明确子集和隶属函数的概念,模糊逻辑探讨了模糊OR和AND函数的性质。在模糊推理的例子中,解释了为何‘刚刚好’的隶属度为0.05而非0.5。概率理论部分则讲解了概率计算和频率估计。博客还提及了概率函数的3个公理以及大数定律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

书:人工智能第2版
有需要电子版的可以私信我。

这次学习模糊集、模糊逻辑、模糊推理、概率理论。

模糊集

明确子集

在这里插入图片描述

模糊集

在这里插入图片描述
这里 x 2 x_2 x2以0.5的隶属度属于集合C。

隶属函数

在这里插入图片描述
在这里插入图片描述
blog.csdnimg.cn/4680bc1646114ffda43d97c6bd8da671.png)

模糊逻辑

在这里插入图片描述

模糊OR函数的性质

在这里插入图片描述

模糊AND函数的性质

在这里插入图片描述

模糊推理

在这里插入图片描述

例子

这个例子中有点迷,为啥“刚刚好”的是隶属度是0.05而不是0.5,有点奇怪,而且后面那个什么阴影部分的重心也没看懂怎么算的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

概率理论和不确定性

没啥好说的,这里书中就讲了概率怎么算,以及如何用频率来估计概率。

概率函数的3个公理

在这里插入图片描述

大数定律

在这里插入图片描述

唉,不太想多写文字,大部分是截图,毕竟也没啥干货。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zx-Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值