层序遍历
这里用图的广度优先搜索举例子。
根节点a开始访问,a先入队,此时队列非空,取出队头元素a,由于b,c与a邻接且未被访问过,于是依次访问b,c将b,c入队。
和BFS不一样的是,层次遍历需要让同一层的元素在一个list的里。
所以在BFS的基础上,还需要加一层while,把当前队列里的元素一起输出。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<List<Integer>> resList=new ArrayList<>();
public List<List<Integer>> levelOrder(TreeNode root) {
if(root==null){
return resList;
}
Queue<TreeNode> queue=new LinkedList<>();
//根节点入队
queue.offer(root);
while(!queue.isEmpty()){
List<Integer> list=new ArrayList<>();
int len=queue.size();//队列中元素表示在同一层
while(len>0){
//访问队列头元素
TreeNode top=queue.poll();
list.add(top.val);
//访问队头元素的左右孩子
if(top.left!=null){
queue.offer(top.left);
}
if(top.right!=null){
queue.offer(top.right);
}
len--;
}
resList.add(list);
}
return resList;
}
}
226.翻转二叉树
这道题目使用前序遍历和后序遍历都可以,唯独中序遍历不方便,因为中序遍历会把某些节点的左右孩子翻转了两次!
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root==null){
return null;
}
//左右中:后续遍历
invertTree(root.left);
invertTree(root.right);
swapNode(root);
return root;
}
//交换节点的方法
public void swapNode(TreeNode root){
TreeNode tmp=root.left;
root.left=root.right;
root.right=tmp;
}
}
**
101.对称二叉树
**
思路:比较根节点的左右子树–>比较左右子树的里侧,外侧是否相同。
递归遍历:
- 左子树的遍历顺序是:左右中
- 右子树的遍历顺序是:右左中
此处递归有几个退出条件的判断: - 碰到左右子树有一个为空,肯定不用再判断其它了,直接false。
- 如果两个都为空了,说明递归结束了,是对称的。
- 如果两个值不一样,也false。
比较左右子树的内外侧:
左子树的外侧,左子树的左边;右子树的外侧,右子树的右边
左子树的内测,左子树的右边;右子树的内测,右子树的左边
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
return compare(root.left, root.right);
}
public boolean compare(TreeNode left,TreeNode right){
//情况1:左子树不空,右子树空
if(left!=null&&right==null){
return false;
}
//情况2:左子树空,右子树不空
if(left==null&&right!=null){
return false;
}
//情况3:左子树空,右子树空
if(left==null&&right==null){
return true;
}
//左右结点值不一样
if(left.val!=right.val){
return false;
}
//比较外侧
boolean outside=compare(left.left, right.right);
//比较内测
boolean inside=compare(left.right, right.left);
if(outside&&inside){
return true;
}else{
return false;
}
}
}