栈和队列相关操作及代码

目录

1. 栈

1.1 顺序存储:顺序栈

1.2 链式存储:链栈

1.3 栈与递归

2. 队列

2.1 顺序存储:循环队列

2.2 链式存储:链队列


1. 栈

后进先出 LIFO  先进后出 FILO

  • Top:栈顶
  • Base:栈底
  • PUSH:插入元素到栈顶,即入栈
  • POP:从栈顶删除最后一个元素,即出栈

1.1 顺序存储:顺序栈

顺序栈的表示:

#define MAXSIZE 100
typedef struct{
        SElemType *base;          //栈底
        SElemType *top;           //栈顶
        int stacksize;            //栈可用最大容量
}SqStack;

 初始化:

Status InitStack(SqStack &S){ //创建一个空栈
        S.base = (SElemType*)malloc(sizeof(SElemType));
        if(!S.base)exit(OVERFLOW); //存储分配失败
        S.top = S.base;   //栈顶指针 等于 栈底指针
        S.stacksize = MAXSIZE;
        return OK;
}

 判断栈是否为空:

Status StackEmpty(SqStack S){    // 若栈为空 返回TRUE
        if(S.top == S.base)
                return TRUE;
        else
                return FALSE;
}

 求长度:

int StackLength(SqStack S){
        return S.top-S.base;
}

清空栈:

Status ClearStack(SqStack S){
       if(S.base) S.top = S.base;
       return OK;
}

销毁栈:

Status DestroyStack(SqStack &S){
        if(S.base){
                delete S.base;
                S.base =S.top =NULL;
                S.stacksize =0;
        }
        return OK;
}

入栈:

  1. 判断是否栈满,满了返回ERROR
  2. 元素e压入栈顶
  3. 栈顶指针加一
 Status push(SqStack &S,SElemType e){
        if(S.top-S.base==stacksize) return ERROR; //栈满
        *S.top ++=e;//* 对所指空间的操作 ||对指针所指的值的直接操作
        return OK;
}

出栈:

  1. 判断是否栈空,空了返回ERROR
  2. 获取栈顶元素e
  3. 栈顶指针减一
Status Pop(SqStack &S,SElemType &e){
       if(S.top==S.base) return ERROR;
       e = *-- S.top;
       return OK;
}

1.2 链式存储:链栈

 链栈的表示:

typedef struct StackNode{
        SELemType data;
        struct StackNode *next;
}StackNode, *LinkStack;
LinkStack S; //尾指针

 初始化:

void InitStack(LinkStack &S){
//构建一个空栈 头指针为空
       S=NULL;
       return OK;
}

判断是否为空:

Status StackEmpty(LinkStack S){
        if(S==NULL)return TRUE;
        else return FALSE;
}

获取栈顶元素:

SElemType GetTop(LinkStack S){
       if(S!=NULL)
           return S->data;
}

入栈:

 Status Push(SqStack &S,SElemtype e){
        p = (LinkStack)malloc(sizeof(StackNode));
        p->data =e; //新节点数据域 置为e
        p->next =S;// 将新节点插入栈顶
        S=p;//修改栈顶指针
        return OK;
}

出栈:

Status Pop(LinkStack &S,SElemType &e){
        if(S==NULL) return ERROR;
        //S->next =S->next->next;
        e = S->data;
        p = S;
        S = S->next;
        delete p;
        return OK;
}

1.3 栈与递归

递归问题:

阶乘

int fact(int n){
	if(n==1) return 1;
	else return n*fact(n-1);
} 

Fibonacci数列

int fib(int n){  
    	int fn;     
    	if(n==0) fn=0;     
    	else if(n==1) fn=1;     
    	else fn=fib(n-1)+fib(n-2);     
    	return fn;     
}

Ackerman函数

int ack(int m,int n){
    while(m!=0){
        if(n==0)  n=1;
        else  n=ack(m, n-1);
        m--;
    }
    return n+1;
}

Hanoi塔:

void move(int n, char* x, char* z)
{
	printf("将编号为%d的圆盘从%s移动到%s\n ", n, x, z);
}

void hanoi(int n, char* x, char* y, char* z)
{
	if (n == 1)
	{
		move(1, x, z);            //将编号为1的圆盘从x移动到z
	}
	else
	{
		hanoi(n - 1, x, z, y);    //将编号为n-1的圆盘从x移动到y,z作为辅助盘
		move(n, x, z);           //将编号为n的圆盘从x移动到z
		hanoi(n - 1, y, x, z);    //将编号为n-1的圆盘从y移动到z,x作为辅助盘
	}
}

int main()
{
	int n = 3;
	char* a = "1号";
	char* b = "2号";
	char* c = "3号";
	hanoi(n, a, b, c);
	return 0;
}

2. 队列

先进先出 FIFO,一端(队尾rear)插入,另一端(队头front)删除

2.1 顺序存储:循环队列

判断空满:

1. 计数器,计数变量最大时为队满,为零时则队空;

2. 设立标志位来区别,入队true,出队false,

sq->rear=sq->front且标志位为true则队满,sq->rear=sq->front且标志位为false则队空;

3. 牺牲一个元素空间来区别,队头在队尾下一个位置,即sq->rear+1=sq->front则为队满;

2.2 链式存储:链队列

初始化:

Q->front->next=NULL;
Q->rear->next=NULL;

 x入队:

px=new Qnode;
px->data=x;
px->next=NULL;

Q->rear->next=px;
Q->rear=px;

 y入队:

px=new Qnode;
px->data=y;
px->next=NULL;

Q->rear->next=px;
Q->rear=px;

x出队:

px=Q->front->next;
Q->front->next=Q->front->next->next;
free(px);

y出队(最后一个元素):

px=Q->front->next;
Q->front->next=Q->front->next->next;
free(px);
Q->rear=Q->front;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值