python人工智能线性回归的变种-岭回归和拉索回归

在 Python 中,岭回归(Ridge Regression)拉索回归(Lasso Regression) 是两种常用的线性回归正则化方法,用于处理多重共线性和防止过拟合。它们通过在损失函数中添加正则化项来实现这一目的。下面详细解释两者的区别及实现方法:


核心区别

特性岭回归 (Ridge)拉索回归 (Lasso)
正则化类型L2 正则化(平方和)L1 正则化(绝对值和)
目标缩小所有系数,但不归零将不重要系数压缩至零(特征选择)
数学形式(\min |y - X\beta|^2 + \alpha ||\beta||_2^2)(\min |y - X\beta|^2 + \alpha ||\beta||_1)
适用场景特征间高度相关,需保留所有特征特征数量多,需自动特征选择

Python 实现(使用 scikit-learn)

1. 岭回归 (Ridge)
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler

# 标准化数据(正则化对尺度敏感)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)

# 训练模型(alpha 控制正则化强度)
ridge = Ridge(alpha=1.0)  # alpha 越大,正则化越强
ridge.fit(X_train, y_train)

# 评估
y_pred = ridge.predict(X_test)
print("MSE:", mean_squared_error(y_test, y_pred))
print("系数:", ridge.coef_)  # 系数接近零但不等于零
2. 拉索回归 (Lasso)
from sklearn.linear_model import Lasso

# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)

# 训练模型
lasso = Lasso(alpha=0.1)  # alpha 需精细调整
lasso.fit(X_train, y_train)

# 评估
y_pred = lasso.predict(X_test)
print("MSE:", mean_squared_error(y_test, y_pred))
print("系数:", lasso.coef_)  # 部分系数严格为零(特征选择)

关键参数说明

  • alpha(正则化强度)
    • 值越大 → 正则化越强 → 系数越小(岭回归)/ 更多系数为零(拉索回归)。
    • 通过交叉验证选择最优值(见下文)。
  • 标准化必须标准化特征,因为正则化对特征尺度敏感。

选择最优 alpha(交叉验证)

使用 RidgeCVLassoCV 自动寻找最佳 alpha

from sklearn.linear_model import RidgeCV, LassoCV

# 岭回归交叉验证
ridge_cv = RidgeCV(alphas=[0.01, 0.1, 1.0, 10.0], cv=5)  # 指定 alpha 候选值
ridge_cv.fit(X_train, y_train)
print("最佳 alpha (Ridge):", ridge_cv.alpha_)

# 拉索回归交叉验证
lasso_cv = LassoCV(alphas=[0.001, 0.01, 0.1, 1.0], cv=5, max_iter=10000)  # 增加迭代次数
lasso_cv.fit(X_train, y_train)
print("最佳 alpha (Lasso):", lasso_cv.alpha_)

何时使用?

  • 岭回归:特征间高度相关,且需要保留所有特征(如医学指标分析)。
  • 拉索回归:高维数据(特征数 > 样本数),或需要自动特征选择(如基因数据)。

弹性网络(Elastic Net)

结合 L1 和 L2 正则化(alpha 控制总强度,l1_ratio 控制 L1/L2 比例):

from sklearn.linear_model import ElasticNet

model = ElasticNet(alpha=0.1, l1_ratio=0.5)  # l1_ratio=0.5 表示 L1/L2 各一半
model.fit(X_train, y_train)

总结

方法API正则化特点
岭回归sklearn.linear_model.RidgeL2保留所有特征
拉索回归sklearn.linear_model.LassoL1自动特征选择(稀疏解)
弹性网络sklearn.linear_model.ElasticNetL1+L2平衡岭回归和拉索回归的优势

通过调整 alpha 和交叉验证,可以显著提升模型泛化能力并解决过拟合问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值