在 Python 中,岭回归(Ridge Regression) 和 拉索回归(Lasso Regression) 是两种常用的线性回归正则化方法,用于处理多重共线性和防止过拟合。它们通过在损失函数中添加正则化项来实现这一目的。下面详细解释两者的区别及实现方法:
核心区别
特性 | 岭回归 (Ridge) | 拉索回归 (Lasso) |
---|---|---|
正则化类型 | L2 正则化(平方和) | L1 正则化(绝对值和) |
目标 | 缩小所有系数,但不归零 | 将不重要系数压缩至零(特征选择) |
数学形式 | (\min |y - X\beta|^2 + \alpha ||\beta||_2^2) | (\min |y - X\beta|^2 + \alpha ||\beta||_1) |
适用场景 | 特征间高度相关,需保留所有特征 | 特征数量多,需自动特征选择 |
Python 实现(使用 scikit-learn)
1. 岭回归 (Ridge)
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
# 标准化数据(正则化对尺度敏感)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
# 训练模型(alpha 控制正则化强度)
ridge = Ridge(alpha=1.0) # alpha 越大,正则化越强
ridge.fit(X_train, y_train)
# 评估
y_pred = ridge.predict(X_test)
print("MSE:", mean_squared_error(y_test, y_pred))
print("系数:", ridge.coef_) # 系数接近零但不等于零
2. 拉索回归 (Lasso)
from sklearn.linear_model import Lasso
# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
# 训练模型
lasso = Lasso(alpha=0.1) # alpha 需精细调整
lasso.fit(X_train, y_train)
# 评估
y_pred = lasso.predict(X_test)
print("MSE:", mean_squared_error(y_test, y_pred))
print("系数:", lasso.coef_) # 部分系数严格为零(特征选择)
关键参数说明
alpha
(正则化强度):- 值越大 → 正则化越强 → 系数越小(岭回归)/ 更多系数为零(拉索回归)。
- 通过交叉验证选择最优值(见下文)。
- 标准化:必须标准化特征,因为正则化对特征尺度敏感。
选择最优 alpha
(交叉验证)
使用 RidgeCV
或 LassoCV
自动寻找最佳 alpha
:
from sklearn.linear_model import RidgeCV, LassoCV
# 岭回归交叉验证
ridge_cv = RidgeCV(alphas=[0.01, 0.1, 1.0, 10.0], cv=5) # 指定 alpha 候选值
ridge_cv.fit(X_train, y_train)
print("最佳 alpha (Ridge):", ridge_cv.alpha_)
# 拉索回归交叉验证
lasso_cv = LassoCV(alphas=[0.001, 0.01, 0.1, 1.0], cv=5, max_iter=10000) # 增加迭代次数
lasso_cv.fit(X_train, y_train)
print("最佳 alpha (Lasso):", lasso_cv.alpha_)
何时使用?
- 岭回归:特征间高度相关,且需要保留所有特征(如医学指标分析)。
- 拉索回归:高维数据(特征数 > 样本数),或需要自动特征选择(如基因数据)。
弹性网络(Elastic Net)
结合 L1 和 L2 正则化(alpha
控制总强度,l1_ratio
控制 L1/L2 比例):
from sklearn.linear_model import ElasticNet
model = ElasticNet(alpha=0.1, l1_ratio=0.5) # l1_ratio=0.5 表示 L1/L2 各一半
model.fit(X_train, y_train)
总结
方法 | API | 正则化 | 特点 |
---|---|---|---|
岭回归 | sklearn.linear_model.Ridge | L2 | 保留所有特征 |
拉索回归 | sklearn.linear_model.Lasso | L1 | 自动特征选择(稀疏解) |
弹性网络 | sklearn.linear_model.ElasticNet | L1+L2 | 平衡岭回归和拉索回归的优势 |
通过调整 alpha
和交叉验证,可以显著提升模型泛化能力并解决过拟合问题。