求逆序数的两种方式(归并排序+树状数组)

本文介绍了如何利用归并排序和树状数组来求解正整数序列中的逆序对数量。通过排序和树状数组模拟插入过程,详细解释了处理相等元素的方法,并给出了两种方法的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

猫猫 TOM 和小老鼠 JERRY 最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计。

最近,TOM 老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定义的:对于给定的一段正整数序列,逆序对就是序列中 ai​>aj​ 且 i<j 的有序对。知道这概念后,他们就比赛谁先算出给定的一段正整数序列中逆序对的数目。注意序列中可能有重复数字。

输入格式

第一行,一个数 n,表示序列中有 n个数。

第二行 n 个数,表示给定的序列。序列中每个数字不超过 10^9。

输出格式

输出序列中逆序对的数目。

输入输出样例

输入 #1复制

6
5 4 2 6 3 1

输出 #1复制

11

说明/提示

对于 25\%25% 的数据,n≤2500

对于 50\%50% 的数据,n≤10^4。

对于所有数据,n≤ 10^5。

树状数组求解:

对树状数组的理解:

对于使用树状数组求逆序数对,可以把数一个一个的插入到树状组中,每插入一个数都要统计一下比它小的个数,对应的逆序为 i - getsum(v[i]),其中i为当前已经插入的数的个数,getsum(v[i]) 为比v[i]小的个数,i - getsum(v[i])即比 v[i]大的个数,即为逆序的个数,最后需要把所有的逆序数求和,就是在插入的过程中边插入边求和。 

需要注意的两个问题:

问题一:根据 ai​ 来建树状数组空间不够啊?

这启发我们对数据 ,先将数据排序,再用 1 ~ n 分别对应 n 个数表示它们的相对大小,对新的序列建树状数组空间就够了(n≤5×10^5)。

for(int i=1;i<=n;i++)
            v[q[i].id]=i;

 问题二:相等的元素是否会导致求解错误?每一个数(不管是否相等)对应的新数都不同诶?

不处理的话会出错的,问题的关键在于是否有与 ai​ 相等的元素在 ai​ 前被加入且其相对大小标记更大。出现这种情况就会误将两个相等的数判为逆序对。怎么解决呢,只要所有与&n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值