题目:
一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点,
- 其左子树中所有结点的键值小于该结点的键值;
- 其右子树中所有结点的键值大于等于该结点的键值;
- 其左右子树都是二叉搜索树。
所谓二叉搜索树的“镜像”,即将所有结点的左右子树对换位置后所得到的树。
给定一个整数键值序列,现请你编写程序,判断这是否是对一棵二叉搜索树或其镜像进行前序遍历的结果。
输入格式:
输入的第一行给出正整数 N(≤1000)。随后一行给出 N 个整数键值,其间以空格分隔。
输出格式:
如果输入序列是对一棵二叉搜索树或其镜像进行前序遍历的结果,则首先在一行中输出
YES
,然后在下一行输出该树后序遍历的结果。数字间有 1 个空格,一行的首尾不得有多余空格。若答案是否,则输出NO
。输入样例 1:
7 8 6 5 7 10 8 11
输出样例 1:
YES 5 7 6 8 11 10 8
输入样例 2:
7 8 10 11 8 6 7 5
输出样例 2:
YES 11 8 10 7 5 6 8
输入样例 3:
7 8 6 8 5 10 9 11
输出样例 3:
NO
涉及知识点:二叉树的重新建立
二叉搜索树的镜像进行前序遍历(根左右遍历)相当于进行(根右左遍历)
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
int val;
node *lch;
node *rch;
};
int a[1010];
int flag;
int check1(int l,int r)//检查是否符合前序遍历
{
if(l>=r)
return 1;
int p;
for(int i=l+1; i<=r; i++)
{
if(a[l]<=a[i])//找到第一个大于等于根节点的点
{
p=i;//a[l+1]之后(包括a[l+1]),a[p]之前(不包括a[p])的点是a[l]节点的左子树的点
break;//要求左子树的点都要小于根节点(即a[l])
}
}
for(int i=p; i<=r; i++)//a[p](包括a[p])后的点,a[r]之前(包括a[r])的点是a[l]节点的右子树的点
{
if(a[l]>a[i])//要求右子树的节点都要大于根节点(即a[l])
return 0;//不满足条件即不符合二叉搜索树的特征
}
return check1(l+1,p-1)&&check1(p,r);//检查左右子树是否符合条件
}
int check2(int l,int r)//镜像【左子树的节点都大于等于根节点,右子树的节点都小于根节点】
{
if(l>=r)
return 1;
int p;
for(int i=l+1; i<=r; i++)//【左子树的点】
{
if(a[l]>a[i])//找到第一个小于根节点的点
{
p=i;
break;
}
}
for(int i=p; i<=r; i++)//右子树
{
if(a[i]>=a[l])//右子树的点需要小于根节点
return 0;
}
return check2(l+1,p-1)&&check2(p,r);//检查左右子树是否满足条件
}
node *insert1(node *root,int x)
{
if(root==NULL)
{
node *root=new node;
root->val=x;
root->lch=NULL;
root->rch=NULL;
return root;
}
if(root->val>x)//传过来的形参比根节点小所以插入左子树中
root->lch=insert1(root->lch,x);
else
root->rch=insert1(root->rch,x);
return root;
}
node *insert2(node *root,int x)//镜像
{
if(root==NULL)
{
node *root=new node;
root->val=x;
root->lch=NULL;
root->rch=NULL;
return root;
}
if(root->val<=x)//建立左子树
root->lch=insert2(root->lch,x);
else
root->rch=insert2(root->rch,x);
return root;
}
void print(node *root)
{
if(root==NULL)
return ;
print(root->lch);
print(root->rch);
if(flag==0)
{
printf("%d",root->val);
flag=1;
}
else
printf(" %d",root->val);
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0; i<n; i++)
scanf("%d",&a[i]);
node *root=new node;//申请一个空间
root=NULL;//初始化
if(check1(0,n-1))//检查是否符合前序遍历
{
for(int i=0; i<n; i++)
root=insert1(root,a[i]);
}
else if(check2(0,n-1))//检查是否符合镜面
{
for(int i=0; i<n; i++)
root=insert2(root,a[i]);
}
else
{
printf("NO\n");
return 0;
}
printf("YES\n");
flag=0;
print(root);
return 0;
}