问题:使用tf.global_variables_initializer()时报错,代码如下:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
# 变量是一种特殊的张量,变量中存的值是张量
# 变量可以进行持久化保存,张量不可以
# 变量使用之前,要进行显式初始化
a = tf.constant([1, 2, 3, 4])
# 定义变量 先进行全局初始化(初始化也是一个OP,需要在session的run下执行)
init_op = tf.global_variables_initializer()
var = tf.Variable(tf.random_normal([2, 3], mean=0.0, stddev=1.0), name='var')
with tf.Session() as sess:
sess.run(init_op)
print(sess.run([a, var]))
报错:tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value var
[[{{node _retval_var_0_0}}]]
然鹅当我把图中11行和第13行代码交换位置时,代码却意外的成功了,真是匪夷所思。
分析:
参考博客:点我点我点我
从博客中可以看到tf.global_variables_initializer()的大致流程如下:
得知这个流程之后博主进行了一遍debug,发现初始化函数只有写在变量后面才能获取到变量初始值并分配op。
从图中可以看到var1和var2定义在tf.global_variables_initializer()之前,所以函数为他们初始化op,而var3在函数后面,所以函数并没有获取到var3,程序报错。