电商常见指标汇总具体参数

有关"人"的指标

  • 客服
指标名词名词解释
询单量下单前来询问客服的客户总数
询单转换率(转化率= 成单数/来访量转化率)影响的因素有:宝贝描述(宝贝图片优化和描述很大程度上决定了转化率的高低。其次是店铺的整体布局和设计。)、销售目标(买家都有从众心理,商铺的定价和定位有待调查和确认,主流的消费群体应该是首选销售目标。)、宝贝的评价(评价对于店铺的存在是致命的,没有信誉便放在之后考虑是很多淘宝买家的心理。)、客服(客服是店铺窗口,好的客服相当于销售成功了一半,对于客服的严格要求是必不可少的。)
平均接待时长平均客服接待客户总的时长
DSR评分DSR就是卖家服务评级系统。就比如我们在淘宝、京东等电商平台卖商品,收到货会要求我们评价评分,DSR评分就是选取连续六个月内的买家给予该项评分的总和除以连续六个月内买家给与该评分的次数。淘宝店铺中DSR评分是淘宝店铺动态评分。淘宝店铺动态评分是指在淘宝网交易成功后,买家可以对本次交易的卖家进行如下三项评分:宝贝与描述相符、卖家的服务态度、物流服务的质量。
  • 用户

》 流量(用户)

指标名词名词解释
免费流量(1)搜索流量;搜索流量涉及的提升维度很多,如全店关键词布局,标题,产品架构等,都是细致功夫。手淘首页手淘首页流量的入口有很多,就是付费流量中提及的生活研究所/爱逛街/必买清单/淘立拍/有好货/有好店/猜你喜欢等,都是(2)手淘首页;流量来源,其中流量最大的可操作性最强的,是猜你喜欢。(3)主动访问;如直接访问、购物车、宝贝收藏、已买到商品等。(4)新品流量;有一个可以利用的规则,在这里说一下,就是大家都知道的淘宝对店铺新品的扶持流量。一件商品在刚上架的时候,淘宝平台会有一定的流量扶持,但是由于一件商品的扶持流量比较小,不会很明显。这时候就可以利用大量的上货,利用淘宝的扶持流量发展自身,想要利用这个规则的话,一次性上架几件宝贝肯定是不行的,最好是一次性上架数百的商品,这样的话,店铺自身就会有比较大的流量。但是一次性上架上百的商品,还是每天都上架数百的商品,完全靠人工的话,几乎不可能完成这个任务。这种情况下只能靠一些软件来采集上传商品,以达到一直不断的获取淘宝的扶持流量的目的。这种大量铺货的模式在店铺前期可以做,等到店铺有比较稳定的流量转化的时候,就可以用精细化运营技术来经营店铺了。
付费流量(1)平台广告;联盟按销售额付佣金,如淘宝客。(2)搜索定向基于平台访客搜索行为,如直通车,同时,直通车也可以人群定向的,下面不再重复提及。(3)人群定向;基于平台访客浏览与购买行为,如钻展,品销宝,淘积木,内容渠道。钻展/品销/淘积木大家应该都比较清楚,这里特别说明一下内容渠道,淘系的内容渠道,如有好货/生活研究所/必买清单/爱逛街…等等,都是基于访客标签个性化展现,这些渠道其实是可以获得大量免费流量的,只要产品足够优质,平台或者达人会主动且免费推,但不能全部指望免费,偶尔联系精准达人付费一下,收获流量与转化率双高,也是不错的。(4)硬广;包断某时段的固定位置,如2012年前淘宝首页首屏焦点图是可以每天16万买到,还送登录页面左侧广告等平台免费资源,这就是传说中的电商红利,当没有了红利,只有土豪才能买硬广了,上次看到的土豪就是科颜氏,买断天猫/淘宝首页第一屏。
UVunique Visitor,指访问某个站点或点击某条新闻的不同IP地址的人数。
PVpage View,即页面浏览量
VV访问次数,访客从进入网站到离开网站的一系列活动记为一次访问,也称会话(session),1次访问(会话)可能包含多个PV。
流量深度(PV/UV)平均每个独立访客产生的PV。人均浏览页数=浏览次数/独立访客。体现网站对访客的吸引程度。PV/UV
停留时长用户在一个商品页面停留的时间
ROI投资回报率;投资回报率(ROI)是指通过投资而应返回的价值,即企业从一项投资活动中得到的经济回报。(投资回报率(ROI)=年利润或年均利润/投资总额×100%)
来源转换率指用户通过什么渠道进入该页面,比如:APP,广告,直通车…
跳失率指统计时间内,访客中没有发生点击行为的人数/访客数,即 1-点击人数/访客数。该值越低表示流量的质量越好。多天的跳失率为各天跳失率的日均值。简单地说,就是访客只访问一个页面就离开了。一个较高的跳失率是不利于店铺转化率提升以及店铺的发展的。

》成交用户

指标名词名词解释
新用户数第一次购买商品的用户
老用户数不是大于一次购买商品的用户
活跃用户数指那些会时不时地光顾下网站,并为网站带来一些价值的用户数量。
沉睡用户数沉睡用户定义,是指有一段时间没有使用、访问的用户数。例如:移动互联网产品常把90天活跃度作为一个评判节点,如果一个用户90天之内没有任何活跃行为,就会被判定为沉睡用户。
复购率再次消费的用户数量/总用户数量x100%比如母婴店有1000个会员,当月有100个会员来店再次消费,则回头率为10%。
客单价一段时间内的销售额/客户数。客单价的本质是:在一定时期内,每位顾客消费的平均价格。
连带率销售件数/交易次数反映的是顾客平均单次消费的产品件数。
RFMRFM模型,包含三个指标:(1)最近一次消费 (Recency):最近一次消费意指上一次购买的时候——顾客上一次是几时来店里、上一次根据哪本邮购目录购买东西、什么时候买的车,或在你的超市买早餐最近的一次是什么时候。(2)消费频率 (Frequency):消费频率是顾客在限定的期间内所购买的次数。我们可以说最常购买的顾客,也是满意度最高的顾客。如果相信品牌及商店忠诚度的话,最常购买的消费者,忠诚度也就最高。增加顾客购买的次数意味着从竞争对手处偷取市场占有率,由别人的手中赚取营业额。(3)消费金额 (Monetary):指的是一段时间(通常是1年)内的消费金额

有关"货"的指标

  • 进货
指标名词名词解释
备货SKU数指仓库中实际储存的货物规格、颜色、款式的数量。 SKU,英文全称为 stock keeping unit,定义为保存库存控制的最小可用单位,例如纺织品中一个SKU通常表示:规格、颜色、款式。 STOCK KEEP UNIT.这是客户拿到商品放到仓库后给商品编号,归类的一种方法. 通常是SKU#是多少多少这样子. 还有的译为存货单元\库存单元\库存单位\货物存储单位\存货保存单位\单元化单位\单品\品种,基于业务还有的是最小零售单位\最小销售单位\最小管理单位\库存盘点单位等;专业物流术语解释为“货格”。
备货品类数指仓库中实际储存的货物种类。
平均每款SKU数一般是基于品类或者平台来进行统计。
平均每款备货数量平均每款备货量=总备货量/备货品类数
品类采销比指采购商品种类和销售种类的比例
价格带采销比指采购商品价格和销售价格的比例
尺码采销比指采购尺码和销售尺码的比例
  • 销售
指标名词名词解释
销售结构(品类/价格带/折扣带)价格带(Price Zone )指各个商品品种销售价格的上限与下限之间的范围。在店铺内,为了满足顾客对既丰富又有效的商品构成的需要,有必要减少销售格层,并缩小价格带。如果销售价格的种类很多,则必然导致顾客不需要的商品增加,使顾客选择商品成为困难,并失去了商店的特性。
畅滞销指市场的产品上因为一些原因不受消费者欢迎而导致销售速度极慢。其特征为:购买量为零;售价等于或低于成本;简单再生产难以为继;
动销率动销,即拉动销售,指在营销的渠道终端,通过一系列的营销组合手段,提高单店/单点销售业绩的方式。促销是动销的方式之一,动销的手段和方式远超出促销的范畴。(1)动销率越高不一定越好(2)动销率等于100%也不一定就是正常,动销率小于100%也不一定就是滞销商品惹得祸。(3)实际工作中不能仅仅被百分比所迷惑,只看数据的表面,不透过表面找到问题的实质。 动销率计算公式为(商品动销率=动销品种数 /仓库总品种数×100%)
售罄率指一定时间段某种货品的销售占总进货的比例,是根据一批进货销售多少比例才能收回销售成本和费用的一个考核指标,便于确定货品销售到何种程度可以进行折扣销售清仓处理的一个合理尺度。售罄率反映了产品的销售速度–是否受欢迎,要充分关注新货上市的售罄率,发现问题研究问题,及时采取措施. (售罄率=实际销售货品成本/总进货成本)或者(售罄率=实际销售货品/总进货零售价)
  • 库存
指标名词名词解释
周转率/天数存货周转率(次数)是指一定时期内企业销售成本与存货平均资金占用额的比率,是衡量和评价企业购入存货、投入生产、销售收回等各环节管理效率的综合性指标
库存金额指的是存货按成本计价的金额。
库存数量指仓库中实际储存的货物数量。
库存结构(年份/品类/价格)指仓库中的货物记录的年份,品类和价格
有效库存比要计算有效库存比首先需要定义有效库存的标准,有效库存定义是能给门店带来价值的商品的库存。从定义来看残次商品、过季商品和没有销售的商品肯定都不属于有效库存商品。不过在实际的分析过程中有效库存的确定会复杂很多,首先无效库存包括残次商品、过季商品、冻销商品、甚至是虚库存,滞销商品。对于滞销商品需要确定一个标准将将有销售的商品分成有效库存和无效库存,这个标准一般以周销售量或月销售量来衡量,并且渠道不同标准是不一样的。例如某款衣服某周销售了2件,2件对于单个专卖店来说这可能就是有效库存,但是对于一个区域或总公司来说销售2件的商品肯定不是有效库存,因为产生的价值不大,需要提高标准。 (有效库存比=有效库存金额/总库存金额×100%)
可销天数指库存里面的总数量可以销售多少天。 有2种核算方式:1.(库存可销天数 = 库存总数量 / 日均销售数量) 2.(库存可销天数 = 库存总成本 / 日均销售成本)
  • 售后
指标名词名词解释
退货率(整体/单款)指产品售出后由于各种原因被退回的数量与同期售出的产品总数量之间的比率。有2种计算方式 1.(退货率=退货批次/出货总批次×100%)2.(退货率=退货总数量/出货总数量×100%)

有关"场"的指标

  • 页面
指标名词名词解释
屏效
流量路径
热力图
停留时长
跳失率
  • 促销
指标名词指标名词
促销宣传度
品牌参活率
促销力度
优惠券
流量
加购商品监控
老用户激活
促销爆发度
促销衰减度
  • 销售
指标名词名词解释
增长率
权重指数
销售额
销售量
订单量
客单价
连带率
成交转化率
业绩达标率
业绩增长率
毛利率
<think>首先,用户查询是关于如何使用MapReduce来实现电商售数据的统计方法或代码示例。用户特别提到了“示例代码Hadoop”。回顾系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-在回答中引用的段落末尾自然地添加引用标识,如[^1]。用户的需求是查找MapReduce实现电商售数据统计的代码示例。从用户提供的引用中,我可以获取相关信息:-引用[1]:介绍Hadoop核心组件HDFS和MapReduce。-引用[2]:讨论Hadoop在处理离线数据时的应用,包括Python脚本通过HadoopStreaming部署MapReduce任务,以及数据从HDFS到MySQL的流程。提到ETL流程。-引用[3]:提到了MapReduce编程案例之电商网站日志的行为分析,包括数据类型如map输入<LongWritable,Text>到输出<IntWritable,IntWritable>等。这是一个具体案例。-引用[4]:标题为电商实战,提到项目需求、工具类、代码实现如PageViewMapper.java等,并有运行结果。-引用[5]:Hadoop核心之MapReduce案例总结,提供了一个WordCount的Mapper和Reducer示例代码。用户明确问的是电商售数据统计的代码示例,所以我应该基于这些引用提供相关内容。特别是引用[3]和[4]直接涉及电商日志分析和实战。我的回答需要结构清晰,逐步解决问题。包括:1.简介MapReduce在电商数据统计中的应用。2.提供代码示例:MapReduce程序包括Mapper、Reducer和Driver。使用Java代码。3.确保代码正确,符合HadoopMapReduce编程模型。4.最后生成相关问题。代码块:用户提到了“示例代码Hadoop”,所以应在回答中包含代码块。类似之前的示例。引用:在引用段落末尾添加引用标识。引用来自用户提供的,如[^1],[^2],等等。生成相关问题:结束时生成2-3个相关问题。大纲回答结构:-第一步:解释MapReduce如何用于电商售数据统计。-基于引用[3],电商日志分析。-第二步:提供代码示例。-参考引用[5]的WordCount示例,并扩展到一个统计售数据的场景。例如,统计不同商品的售额。-引用[4]提到PageViewMapper.java等,所以我需要推测或创建相关的代码。-假设一个场景:统计每个产品的售数量或售额。-输入:日志或数据文件,格式如<product_id,quantity,price>。-Mapper:提取产品ID和售额(quantity*price)或其他。-Reducer:求和。-数据类型:map输入<LongWritable,Text>(offset和行内容),输出<Text,IntWritable>或类似。-第三步:给出完整代码示例,包括Mapper、Reducer和Driver类。-第四步:简要说明运行和输出。-第五步:结束生成相关问题。代码细节:-Mapper:类似WordCount,但键为产品ID,值为售额或数量。-Reducer:计算总和。-使用Java。确保语言:用中文回答。数学表达式:如果有数学内容,如统计平均售额等,用$...$。但本例可能较少。相关问题示例:1.如何优化MapReduce作业以提高电商数据处理效率?2.MapReduce在电商数据分析中的局限性是什么?3.如何使用Hive或Pig等工具进行类似统计?最终,回答后添加§§相关问题§§部分。</think> ### MapReduce实现电商售数据统计:方法与代码示例 MapReduce是Hadoop的核心计算模型,用于分布式处理大规模数据集,如电商售数据。通过将任务分解为Map阶段(处理输入数据并生成键值对)和Reduce阶段(聚合结果),它可以高效统计指标(如售额、量)。以下基于用户提供的引用内容,我将逐步解释统计方法,并提供完整的Java代码示例(使用Hadoop MapReduce框架)。假设示例场景是统计**每个商品的售总量**(售额 = 量 × 单价),输入数据格式为日志文件(例如`product_id,sales_quantity,unit_price`)。 #### 1. MapReduce统计方法概述 在电商售数据统计中,常见方法包括: - **数据准备**:原始数据存储在HDFS上(如售日志),格式为文本文件,每行记录代表一笔交易。例如: ``` 1,5,100.0 // 商品ID=1,量=5,单价=100.0 2,3,50.0 // 商品ID=2,量=3,单价=50.0 1,2,100.0 // 商品ID=1,量=2,单价=100.0 ``` - **Map阶段**:解析每行输入数据(文本形式),提取商品ID作为键(Key),售额(量×单价)作为值(Value)。输出键值对形式为<Text, DoubleWritable>。 - **Shuffle阶段**:Hadoop自动将相同商品ID的键值对分组发送到同一Reducer节点。 - **Reduce阶段**:对每个商品ID,汇总所有售额值,生成最终结果(如商品ID和总售额)。 - **输出**:结果写入HDFS或数据库(如MySQL),便于后续查询或分析[^2][^3]。 这种方法适用于海量离线数据处理,能显著提升性能。核心优势包括分布式并行计算和自动错误处理[^1]。 #### 2. 代码示例:电商售总量统计 以下是一个完整的Hadoop MapReduce Java实现。基于引用[3]的电商日志分析数据类型和引用[5]的WordCount案例结构,我将代码扩展为售统计示例。假设数据类型如下: - Map输入:<LongWritable, Text>(行偏移量和文本内容) - Map输出:<Text, DoubleWritable>(商品ID和单笔售额) - Reduce输入:<Text, DoubleWritable>(同Map输出) - Reduce输出:<Text, DoubleWritable>(商品ID和总售额) 完整代码包含三个部分:Mapper类、Reducer类和Driver类。您可以将此代码打包为JAR文件,并在Hadoop集群上运行。 ##### Mapper类(SalesMapper.java) Mapper解析每行数据,计算单笔售额并输出键值对。 ```java import java.io.IOException; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class SalesMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> { private Text productId = new Text(); private DoubleWritable saleAmount = new DoubleWritable(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1. 获取一行数据并转换为字符串 String line = value.toString(); // 2. 分割逗号分隔的数据(假设格式: product_id,sales_quantity,unit_price) String[] parts = line.split(","); if (parts.length == 3) { try { // 3. 提取字段 String id = parts[0].trim(); int quantity = Integer.parseInt(parts[1].trim()); double price = Double.parseDouble(parts[2].trim()); // 4. 计算售额 = 量 × 单价 double amount = quantity * price; // 5. 设置键值对(商品ID,售额) productId.set(id); saleAmount.set(amount); // 6. 写出 context.write(productId, saleAmount); } catch (NumberFormatException e) { // 忽略格式错误行 } } } } ``` ##### Reducer类(SalesReducer.java) Reducer接收商品ID和对应的售额列表,求和后输出总售额。 ```java import java.io.IOException; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class SalesReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> { private DoubleWritable totalAmount = new DoubleWritable(); @Override protected void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException { // 1. 初始化总售额 double sum = 0.0; // 2. 遍历所有值(单笔售额),求和 for (DoubleWritable val : values) { sum += val.get(); } // 3. 设置结果并写出 totalAmount.set(sum); context.write(key, totalAmount); } } ``` ##### Driver类(SalesDriver.java) Driver配置和启动MapReduce作业,定义输入/输出路径。 ```java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SalesDriver { public static void main(String[] args) throws Exception { // 1. 创建配置和作业实例 Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Ecommerce Sales Statistics"); // 2. 设置Jar类 job.setJarByClass(SalesDriver.class); // 3. 设置Mapper和Reducer类 job.setMapperClass(SalesMapper.class); job.setReducerClass(SalesReducer.class); // 4. 设置Map和Reduce输出类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(DoubleWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DoubleWritable.class); // 5. 设置输入和输出路径(从命令行参数获取) FileInputFormat.addInputPath(job, new Path(args[0])); // 输入路径,如HDFS上的/logs FileOutputFormat.setOutputPath(job, new Path(args[1])); // 输出路径,如HDFS上的/output // 6. 提交作业并等待完成 System.exit(job.waitForCompletion(true) ? 0 : 1); } } ``` #### 3. 运行说明和输出示例 - **运行步骤**: 1. 编译代码并打包为JAR文件。 2. 使用Hadoop命令提交作业:`hadoop jar your-jar.jar SalesDriver input_path output_path`。 3. 输入路径指向HDFS上的售数据文件(如引用[4]中的日志文件)。 - **输出结果**:在HDFS输出路径中生成文件,格式为: ``` 1 700.0 // 商品1总售额=700 2 150.0 // 商品2总售额=150 ``` - **性能优化**:对于海量数据,Hadoop自动分布式处理;引用[2]中提到,Python脚本可通过Hadoop Streaming部署类似任务,提高灵活性[^2]。 此代码适用于基本统计需求。如果需要更复杂分析(如平均售额 $ \bar{x} = \frac{\sum x_i}{n} $),可以修改Reducer逻辑。Hadoop Streaming或更高层工具(如Hive)也可实现类似功能[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值