YOLOv5,YOLOv8改进-修改DCNv2

本文详细介绍了YOLO系列算法中关于DCNv2的改进,探讨了DCN网络结构,强调了DCNv1和v2在处理目标几何变换上的差异,并提出DCNv2通过扩展可变形卷积和特征模拟方案来提高建模能力,以解决特征定位不准确的问题。此外,还提到了在YOLOV8中应用DCN的相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 概述
Deep&Cross Network(DCN)[1]是由Google于2017年提出的用于计算CTR问题的方法,是对Wide&Deep[2]模型的进一步改进。线性模型无法学习到特征的交叉属性,需要大量的人工特征工程的介入,深度网络对于交叉特征的学习有着天然的优势,在Wide&Deep模型中,Deep侧已经是一个DNN模型,而Wide侧是一个线性模型LR,无法有效的学习到交叉特征。在DCN中针对Wide&Deep模型的Wide侧提出了Cross网络,通过Cross网络学习到更多的交叉特征,提升整个模型的特征表达能力。

2. 算法原理

2.1. DCN的网络结构

DCN模型的网络结构如下图所示:

 DCNv1解决的问题就是我们常规的图像增强,仿射变换(线性变换加平移)不能解决的多种形式目标变换的几何变换的问题

DCN v2
对于positive的样本来说,采样的特征应该focus在RoI内,如果特征中包含了

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值