YOLOv5修改注意力机制CBAM

本文介绍了如何在YOLOv5中应用CBAM注意力模块,通过通道和空间注意力增强模型表现。CBAM包括通道注意力和空间注意力两部分,分别通过全局平均池化和全局最大池化来压缩特征图,并通过多层感知器网络学习权重。在YOLOv5的改进中,详细说明了在yaml配置文件、common和yolo.py中的实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、论文的出发点

二、论文的主要工作

三、CBAM模块的具体介绍​​​​​​​

四.YOLOv5改进

4.1yaml 配置文件如下

4.2common加入以下代码

4.3yolo.py 中注册


一、论文的出发点


cnn基于其丰富的表征能力,极大地推动了视觉任务的完成,为了提高cnn网络的性能,最近的研究主要聚焦在网络的三个重要因素:深度、宽度和基数。除了这些因素,作者还研究了网络架构的一个不同方面——注意力。注意力研究的目标是通过使用注意机制来增加表现能力:关注重要的特征,并抑制不必要的特征。在本文中,作者提出了一个新的网络模块,名为“卷积块注意模块”(CBAM),该模块用来强调这两个主要维度上的有意义的特征:通道和空间轴,该模块实现方式是通过学习强调或抑制哪些信息,有效地帮助信息在网络中流动。
 

二、论文的主要工作


1. 提出了一种简单而有效的注意力模块(CBAM),可广泛应用于增强cnn的表示能力。
2. 作者验证了该注意模块的有效性,通过广泛的消融试验。
3. 通过插入CBAM,作者验证了在多个基准测试(ImageNet-1K, MS COCO,和VOC 2007)上,各种网络的性能都得到了极大的改善。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值