0-1背包问题
暴力–回溯法
回溯就是递归::
- 参数: 重量数组、价值数组、背包最大承重、每次开始的索引号startindex、当前背包中的物品总价值
- 递归终止条件:当背包中的物品重量超过背包承重时,返回。当背包中物品的重量不超过背包承重的时候,计算当前背包中物品的总价值。
- 单层遍历:遍历重量数组中从startindex开始的数。加入path中,进入下一层,回溯。
static ArrayList<Integer> bags = new ArrayList<>(); //背包中放的物品
static int maxValue = 0;
//回溯法
private static void backtracking(int[] weight, int[] value, int bagsize, int startindex, int curValue) {
int sum = 0;
for (int i = 0; i < bags.size(); i++) {
sum += bags.get(i);
}
//超过背包重量 返回
if (sum > bagsize){
return;
}else {
maxValue=Math.max(maxValue,curValue);
}
//单层循环逻辑
for (int i = startindex; i < weight.length; i++) {
bags.add(weight[i]);
curValue += value[i];
backtracking(weight,value,bagsize,i+1,curValue);
bags.remove(bags.size()-1);
curValue -=value[i];
}
}
动态规划法–使用二维数组
-
需要明确的是:i和j的含义
i:第i个物品
j:背包最大承重j
dp[i][j]:背包最大承重为j的时候,从0-i个物品中任意选取物品能得到的最大价值。 -
递推公式:dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+vaule[i])
-
初始化:for(weight[0]–>bagsize) 赋值为value[0] (也就是先在背包中放一个物品0)
-
遍历顺序
for(i=1 --> 物品个数)
for(j = 1 --> bagsize)
//动态规划法
private static int testWeightBagProblem(int[] weight, int[] value, int bagsize) {
//物品个数
int goods = weight.length;
//dp[i][j]数组的含义 i:第i个物品 j:背包的重量
int[][] dp = new int[goods][bagsize+1];
//初始化dp数组
for (int j = weight[0]; j < bagsize+1; j++) {
dp[0][j] = value[0];
}
//填充这个数组
for (int i = 1; i < goods; i++) {
for (int j = 1; j < bagsize+1; j++) {
if (j < weight[i]){
dp[i][j] = dp[i-1][j];
}else {
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
}
}
}
return dp[goods-1][bagsize];
}
动态规划 使用一维数组
- 数组含义:j 背包承重 dp[j]:背包承重为j的时候,背包中物品的最大价值
- 递推公式:dp[j] = Math.max(dp[j], dp[j-weight[i]]+vaule[i])
- 初始化:初始化都为0 就可以了
- 遍历顺序
for(i =0–>物品个数)
for(j = bagsize–> weight[i])
//动态规划法
private static int testWeightBagProblem(int[] weight, int[] value, int bagsize) {
//物品个数
int goods = weight.length;
//dp[j]数组的含义 j:背包的重量
int[] dp = new int[bagsize+1];
//填充这个数组
for (int i = 0; i < goods; i++) {
for (int j = bagsize; j >= weight[i]; j--) {
dp[j] = Math.max(dp[j],dp[j-weight[i]]+value[i]);
}
}
return dp[goods-1][bagsize];
}