题目描述
给定一个按非递减顺序排序的整数数组 A,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。
代码说明
package hlzcc.demo;
//力扣997 有序数组的平方
class Soution{
public void sortedSquares(int[] A){
int N = A.length; // 数组的长度说明
int j = 0; //首先定义指针j的位置
//找出正数和负数的分界位置
while( j < N && A[j] < 0 ){
j++;
}
int i = j-1; //因为方法利用的双指针,所以这两个指针起始位置相邻,也是正数和负数的分界的位置
int[] ans = new int[N]; //创建一个数组,长度和输入的长度一致,用来存放输出的结果
int t = 0;
//当 i >= 0 指针没有超出输入数组的左边界,j<N表示j指针没有超出数组的有边界
while( i >= 0 && j < N )
//起始指针位置向两边遍历的值的平方的比较,较小的存在数组ans中
if( A[i]*A[i] < A[j]*A[j]){
ans[t++] = A[i]*A[i];
i--; //i指针遍历的值的平方较小,所以将i指针向左移动,也就是减1
}else{
ans[t++] = A[j]*A[j]; //j指针的值平方的结果较小的情况,将其平方结果呢放入数组ans中,并移动j指针
j++;
}
//若右边的指针j已经遍历完了,j>N的时候,接下来继续遍历左边的
while( i >= 0){
ans[t++] = A[i]*A[i];
i--;
}
//若左边的指针已经遍历结束了,则继续遍历右边的指针
while( j < N){
ans[t++] = A[j]*A[j];
j++;
}
// return ans;
System.out.println("平方排序后的结果:");
for(int k = 0; k < ans.length; k++){
System.out.println(ans[k]);
}
}
public static void main(String[] args){
int[] A = {-4, -1, 0, 3, 10};
Soution sfc = new Soution();
sfc.sortedSquares(A);
}
}
上述代码的运行结果:
思路总结:
\qquad述示例中我们可以从数组的负数部分看出其平方的结果是降序,数组的正数部分的平方结果是升序的,我们针对于这样特殊的数组所以采用了双指针的方法来完成。
\qquad指针 i 方向读取数组的负数部分,指针 j 正向读取非负数部分。然后读取的过程再将其平方进行比较,将平方结果较小的放在新建的数组中。两个指针遍历不同的部分,如果其中一个指针遍历结束,则剩下的指针继续遍历。
方法二
package hlzcc.demo;
//力扣997 有序数组的平方 不同的方法实现
//这里不主将的原因是因为上机测试可能不能调用该方法的库函数
import java.lang.reflect.Array;
import java.util.Arrays;
class Soutionn {
public void sortedSquaress(int[] A){
int N = A.length;
int[] ans = new int[N];
for( int i = 0; i< N; i++)
ans[i] = A[i]*A[i];
//这里直接利用数组的方法将上述已经平方的数组进行排序
Arrays.sort(ans);
// return ans;
System.out.println("平方排序后的结果:");
for(int k = 0; k < ans.length; k++){
System.out.println(ans[k]);
}
}
public static void main(String[] args){
int[] A = {-4, -1, 0, 3, 10};
Soutionn sfcc = new Soutionn();
sfcc.sortedSquaress(A);
}
}
说明:方法二没办法使用库函数的情况下不能使用,所以不提倡!