十五天掌握OpenCV——图像修补

本文介绍使用OpenCV中的修补技术去除老照片噪音和划痕的方法。重点讲解了两种修补算法:基于快速行进算法的Telea算法和基于流体动力学的Navier-Stokes算法,通过代码演示了如何应用这些技术来修复图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

魏老师学生——Cecil:学习OpenCV-机器视觉之旅


Aim:使用修补技术去除老照片中小的噪音和划痕。
使用OpenCV中与修补技术有关的函数。

基础

  1. 如何修复退化的老照片?用坏点周围的像素取代坏点,使其和周围像素比较像。OpenCV中有两种算法:
    **算法一:**基于快速行进算法。
  2. 算法从要修补的区域的边界开始,向区域内部慢慢前进。
  3. 首先填充区域边界像素。
  4. 选取待修补像素周围的一个小邻域,使用邻域内的归一化加权和更新待修复的像素值。
  5. 权重选择:靠近带修复点的像素点、靠近正常边界像素点和在轮廓上的像素点给与更高的权重。
  6. 当像素被修复后,使用快速行进算法移动到下一个最近像素。
  7. FMM保证靠近已知像素点的坏点先被修复。标签参数:cv2.INPAINT_TELEA.
    **算法二:**基于流体动力学并使用偏微分方程。
  8. 基本原理:启发式。
  9. 先沿着正常区域的边界向退化区域的边界前进。
  10. 通过匹配待修复区域中的梯度向量来延伸等光强线(isophotes,由灰度值相等的点连成的线)。使用流体动力学中的方法实现此目的,然后通过填充颜色来使这个区域内的灰度值变化最小。标签参数:cv2.INPAINT_NS.

代码演示

#coding=utf-8
import cv2
import numpy as np

img=cv2.imread('./image2/1234.jpg')
mask=cv2.imread('./image2/123.jpg',0)

dst=cv2.inpaint(img,mask,3,cv2.INPAINT_TELEA)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值