
降维
莫一丞元
根特大学PhD在读
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
T-SNE理解
主要应用于可视化,虽然降维效果好,但是时间太长。该算法知道即可。t-SNE: t-分布领域嵌入算法,读作“Tee-Snee”,它只在用于已标记数据时才真正有意义,可以明确显示出输入的聚类状况。主要想法就是,将高维分布点的距离,用条件概率来表示相似性,同时低维分布的点也这样表示。只要二者的条件概率非常接近(用相对熵来训练,所以需要label),那就说明高维分布的点已经映射到低维分布上了。Sklearn提供APISklearn.mainflod.TSNE方法...原创 2020-09-09 20:43:57 · 1011 阅读 · 0 评论 -
SVD分解
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域,是很多机器学习算法的基石。回顾特征值分解奇异值分解SVD重要性质...原创 2020-09-09 20:26:29 · 292 阅读 · 0 评论 -
PCA理解
部分一:概括PCA(PrincipalComponent Analysis),即主成分分析方法,有两种通俗易懂的解释:(1)最大方差理论;(2)最小化降维造成的损失。这两个思路都能推导出同样的结果。其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前原创 2020-09-09 20:20:18 · 501 阅读 · 0 评论 -
LLE理解
背景局部线性嵌入(LocallyLinear Embedding,以下简称LLE)是一种降维方法。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域。LLE属于流形学习(ManifoldLearning)的一种。一般认为LLE中的流形是一个不闭合的曲面。这个流形曲面有数据分布比较均匀,且比较稠密的特征。基于流行的降维算法希望在降维的过程中希望流形在高维的一些特征在低维可以原创 2020-09-09 20:14:16 · 2429 阅读 · 0 评论 -
降维理解
原创 2020-09-09 20:07:37 · 347 阅读 · 0 评论