DIDL2_Softmax回归(分类)

本文探讨了从回归到多类分类的转换,重点介绍了在多类分类中如何使用Softmax函数和交叉熵损失。回归用于连续值预测,而分类则涉及离散类别的预测。在多类分类中,每个输出代表对应类别的概率。通过使用均方损失进行训练,可以得到最大值预测。然而,为了确保模型能正确区分真正类别,通常采用Softmax和交叉熵损失,因为它们能提供更可靠的分类信心,并有助于增加类别间的间隔。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

softmax回归

回归 vs 分类

  • 回归估计一个连续值
  • 分类预测一个离散类别

从回归到多类分类
回归

  • 单连续数值输出
  • 自然区间R
  • 跟真实值的区别作为损失
    在这里插入图片描述

分类

  • 通常多个输出
  • 输出i是预测为第i类的置信度
    在这里插入图片描述

从回归到多类分类-均方损失

  • 对类别进行一位有效编码
    在这里插入图片描述
  • 使用均方损失训练
  • 最大值为预测
    在这里插入图片描述
  • 需要更置信的识别正确类(大余量)(保证模型能够将真正的类与其他类拉开距离)
    在这里插入图片描述

校验比例

在这里插入图片描述

Softmax和交叉熵损失

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值