主线3.1DeepFM模型论文阅读:DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

一、摘要

对于一个基于CTR预估的推荐系统,最重要的是学习到用户点击行为背后隐含的特征组合。在不同的推荐场景中,低阶组合特征或者高阶组合特征可能都会对最终的CTR产生影响。但是现存的方法总是忽视了高阶或低阶组合特征的联系,或者要求专门的特征工程,因此作者建立了DeepFM模型,将FM与DNN结合起来(这点跟wide&deep的结合有异曲同工之妙,后面会讲到)。

二、模型演变和各模型间的对比

1、CTR的任务要求

1、CTR的数据特点:
1、输入中包含类别型和连续型数据。类别型数据需要one-hot,连续型数据可以先离散化再one-hot,也可以直接保留原值
2、维度非常高且数据非常稀疏
3、引入FFM后特征按照Field分组

2、CTR的预估重点:
CTR预估重点在于学习组合特征。
其中,组合特征包括二阶、三阶甚至更高阶的,阶数越高越复杂,越不容易学习。Google的论文研究得出结论:高阶和低阶的组合特征都非常重要,同时学习到这两种组合特征的性能要比只考虑其中一种的性能要好。

那么关键问题转化成:如何高效的提取这些组合特征。
一种办法就是引入领域知识人工进行特征工程。这样做的弊端是高阶组合特征非常难提取,会耗费极大的人力。而且,有些组合特征是隐藏在数据中的,即使是专家也不一定能提取出来,比如著名的“尿布与啤酒”问题。

2、DeepFM模型的引入

为了解决上文提到的提取组合特征的问题,该论文作者借鉴了Google的wide & deep的做法提出了DeepFM模型。

DeepFM模型本质是
1、将Wide & Deep 部分的wide部分由 人工特征工程+LR 转换为FM模型,避开了人工特征工程;
2、FM模型与deep part共享feature embedding。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值