【题解】 金明的预算方案 (NOIP 2006 提高组 第二题)

题目来源:洛谷

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
在这里插入图片描述
请你帮助金明设计一个满足要求的购物单。

输入格式

第1行,为两个正整数,用一个空格隔开:

Nm (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。) 从第2行到第m+1行,第j行给出了编号为j−1的物品的基本数据,每行有3个非负整数

vpq (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1−5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

输出格式

一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。

输入输出样例

输入 #1
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出 #1
2200

思路:
做回一年前A掉的题,用的是同一种思考方式,第一次提交才30分??!!
我去自闭

回到正题,我们发现一个主件最多只有两个附件,那组合方式有

1.主件

2.主件+附件1

3.主件+附件2

4.主件+附件1+附件2

那么我们可以把上面看做一个组里的4个物品,他的重量和价值就是所包含的物品的重量和+价值和,然后就可以做分组背包,因为每组只能选一件嘛(简单思考可知)

先看看我一年前写的代码:
//这个程序把有依赖的背包问题转换为01背包问题!!! 
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m,newv[10],newp[10],v[100],q[100],f[32010];
long long p[100];
int calc(int k)
{
   
    int x=1;
  memset(newv,0,sizeof(newv)); //临时价格数组 
  memset(newp,0,sizeof(newp));//临时重要度数组 
  newv[1]=v[k]; //newv[1]=主件的价格 
  newp[1]=p[k];//newp[1]=主件的重要度 
  for(int i=1;i
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值