题目来源:洛谷
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
请你帮助金明设计一个满足要求的购物单。
输入格式
第1行,为两个正整数,用一个空格隔开:
Nm (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。) 从第2行到第m+1行,第j行给出了编号为j−1的物品的基本数据,每行有3个非负整数
vpq (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1−5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出格式
一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
输入输出样例
输入 #1
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出 #1
2200
思路:
做回一年前A掉的题,用的是同一种思考方式,第一次提交才30分??!!
我去自闭
回到正题,我们发现一个主件最多只有两个附件,那组合方式有
1.主件
2.主件+附件1
3.主件+附件2
4.主件+附件1+附件2
那么我们可以把上面看做一个组里的4个物品,他的重量和价值就是所包含的物品的重量和+价值和,然后就可以做分组背包,因为每组只能选一件嘛(简单思考可知)
先看看我一年前写的代码:
//这个程序把有依赖的背包问题转换为01背包问题!!!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m,newv[10],newp[10],v[100],q[100],f[32010];
long long p[100];
int calc(int k)
{
int x=1;
memset(newv,0,sizeof(newv)); //临时价格数组
memset(newp,0,sizeof(newp));//临时重要度数组
newv[1]=v[k]; //newv[1]=主件的价格
newp[1]=p[k];//newp[1]=主件的重要度
for(int i=1;i