
🪐Pytorch学习 快乐星球
文章平均质量分 91
带你学习Pytorch,从0开始,并且里面包括很多很多好的pytorch的ticks,特别适合想要学习pytorch的朋友们进行学习,能够接触实战项目并了解pytorch,对学习有很大的帮助,也希望大家能在本专栏中学习到更多的东西。
风信子的猫Redamancy
在校本科大学生 B站up小白风信子的猫Redamancy 个人博客地址: https://kedreamix.github.io/
2022第十三届蓝桥杯PythonB组省一等奖,以及国赛一等奖
2022年第十二届MathorCup高校数学建模挑战赛 研究生组 二等奖
对计算机视觉,人工智能,以及机器学习等方面感兴趣
放弃不难 但坚持一定很酷
成功的法则极为简单,但简单并不代表容易
希望自己在这条路上,不孤单,不言弃,不言败
Stay Hungry,Stay Foolish
有时候没有及时回私信等等,可以发邮件咨询,[email protected],你们的问题我都会认真看和回答的
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pytorch Note56 Fine-tuning 通过微调进行迁移学习
Pytorch Note56 Fine-tuning 通过微调进行迁移学习文章目录Pytorch Note56 Fine-tuning 通过微调进行迁移学习通过微调进行迁移学习ImageNet定义数据预处理使用预训练的模型将最后的全连接层改成二分类训练模型预测小练习使用预训练的模型不使用预训练的模型全部笔记的汇总贴:Pytorch Note 快乐星球通过微调进行迁移学习前面我们介绍了如何训练卷积神经网络进行图像分类,可能你已经注意到了,训练一个卷积网络是特别耗费时间的,特别是一个比较深的卷积网络,而原创 2021-09-12 15:54:27 · 2385 阅读 · 3 评论 -
Pytorch Note25 深层神经网络实现 MNIST 手写数字分类
Pytorch Note25 深层神经网络实现 MNIST 手写数字分类文章目录Pytorch Note25 深层神经网络实现 MNIST 手写数字分类MNIST 数据集多分类问题softmax交叉熵多层全连接神经网络实现 MINST 手写数字分类数据预处理简单的四层全连接神经网络定义loss 函数训练网络画出 loss 曲线和 准确率曲线全部笔记的汇总贴:Pytorch Note 快乐星球MNIST 数据集mnist 数据集是一个非常出名的数据集,基本上很多网络都将其作为一个测试的标准,其来自美国原创 2021-07-21 10:11:03 · 2490 阅读 · 4 评论 -
Pytorch Note 快乐星球
Pytorch Note这是我的Pytoch学习笔记,下面会慢慢的更新我的学习笔记Note1 Pytorch介绍Note2 Pytorch环境配置原创 2021-06-11 13:24:18 · 11558 阅读 · 16 评论 -
Pytorch CIFAR10 图像分类篇 汇总
Pytorch CIFAR10 图像分类篇 汇总接下来我会分别利用深度学习的方法,用Pytorch实现我们的CIFAR10的图像分类大概预计的模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet等,除此之外也会陆续补充希望这能够帮助初学机器学习的同学一个入门Pytorch的项目和在这之中更加了解Pytorch和各个图像分类的模型。Pytorch CIFAR10图像分类 数据加载篇Pytorch CIFAR10图像分类 自定义网络篇Pytorc原创 2021-08-01 01:29:39 · 8876 阅读 · 20 评论 -
ClassicNetwork 图像分类网络论文链接汇总
ClassicNetwork 图像分类网络论文链接汇总Classical network implemented by pytorchLeNet:LeNet: LeNet-5, convolutional neural networkshttp://yann.lecun.com/exdb/lenet/index.htmlAlexNet:ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizh原创 2022-05-08 10:01:04 · 5333 阅读 · 0 评论 -
Pytoch Note58 CNN可视化
Pytoch Note58 CNN可视化文章目录Pytoch Note58 CNN可视化CNN卷积核可视化CNN特征图可视化方法CNN class activation map可视化方法使用FlashTorch快速实现CNN可视化全部笔记的汇总贴:Pytorch Note 快乐星球卷积神经网络(CNN)是深度学习中非常重要的模型结构,它广泛地用于图像处理,极大地提升了模型表现,推动了计算机视觉的发展和进步。但CNN是一个“黑盒模型”,人们并不知道CNN是如何获得较好表现的,由此带来了深度学习的可解释原创 2022-04-20 16:25:30 · 3921 阅读 · 1 评论 -
Pytorch Note57 Pytorch可视化网络结构
Pytorch Note57 Pytorch可视化网络结构文章目录Pytorch Note57 Pytorch可视化网络结构使用print打印torchinfo可视化安装torchinfo或者torchsummary使用torchinfo全部笔记的汇总贴:Pytorch Note 快乐星球随着深度神经网络做的的发展,网络的结构越来越复杂,我们也很难确定每一层的输入结构,输出结构以及参数等信息,这样导致我们很难在短时间内完成debug。因此掌握一个可以用来可视化网络结构的工具是十分有必要的。类似的功能原创 2022-04-20 12:02:36 · 2441 阅读 · 1 评论 -
Pytorch Note55 迁移学习实战猫狗分类
Pytorch Note55 迁移学习实战猫狗分类文章目录Pytorch Note55 迁移学习实战猫狗分类加载数据集迁移学习网络定义训练模型的函数定义一个测试的函数1.AlexNet2.VGG163.ResNet184.DenseNet5.MobileNet V26.ShuffleNetV2总结全部笔记的汇总贴:Pytorch Note 快乐星球在这一部分,我会用迁移学习的方法,实现kaggle中的猫狗分类,这是一个二分类的问题,我们可以直接使用修改我们的预训练的网络卷积部分提取我们自己图片的特征,原创 2021-09-10 08:42:43 · 2422 阅读 · 0 评论 -
Pytorch Note54 迁移学习简介
Pytorch Note54 迁移学习简介文章目录Pytorch Note54 迁移学习简介迁移学习简介机器学习中的迁移学习迁移学习简介迁移学习(transfer learning)通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三。由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识。比如,已经会下中国象棋,就可以类比着来学习国际象棋;已经会编写Java程序,就可以类比着来学习C#;已经学会英语,就可以类比原创 2021-09-09 00:31:17 · 2314 阅读 · 0 评论 -
Pytorch Note53 TensorBoard 可视化
Pytorch Note53 TensorBoard 可视化文章目录Pytorch Note53 TensorBoard 可视化安装TensorBoardTensorBoard 的使用1. TensorBoard 设置2. 写入 TensorBoard启动TensorBoard3. 使用 TensorBoard 检查模型4. 在 TensorBoard 中添加“投影仪”5. 使用 TensorBoard 跟踪模型训练6. 使用 TensorBoard 评估经过训练的模型常见的问题1.杀死进程2.端口被占用原创 2021-09-08 01:33:56 · 2267 阅读 · 0 评论 -
Pytorch Note52 灵活的数据读取介绍
Pytorch Note52 灵活的数据读取介绍文章目录Pytorch Note52 灵活的数据读取介绍灵活的数据读取读入数据传入数据预处理方式DatasetDataLoader例子接下来是第二种情况,也是较为复杂的情况全部笔记的汇总贴:Pytorch Note 快乐星球图片数据一般有两种情况:1、所有图片放在一个文件夹内,另外有一个txt文件显示标签。2、不同类别的图片放在不同的文件夹内,文件夹就是图片的类别。针对这两种不同的情况,数据集的准备也不相同,第一种情况可以自定义一个Dataset,原创 2021-09-07 09:31:49 · 2242 阅读 · 6 评论 -
Pytorch Note51 Deep Q Networks
Pytorch Note51 Deep Q Networks文章目录Pytorch Note51 Deep Q Networks全部笔记的汇总贴:Pytorch Note 快乐星球前面我们介绍了强化学习中的 q-learning,我们知道对于 q-learning,我们需要使用一个 Q 表来存储我们的状态和动作,每次我们使用 agent 不断探索环境来更新 Q 表,最后我们能够根据 Q 表中的状态和动作来选择最优的策略。但是使用这种方式有一个很大的局限性,如果在现实生活中,情况就会变得非常的复杂,我们原创 2021-09-03 15:31:11 · 2505 阅读 · 0 评论 -
Pytorch Note50 Gym 介绍
Pytorch Note50 Gym 介绍文章目录Pytorch Note50 Gym 介绍mounttain car全部笔记的汇总贴:Pytorch Note 快乐星球在前面的笔记中,简单的介绍了强化学习的例子,但是我们会发现构建强化学习的环境非常麻烦,需要耗费我们大量的时间,这个时候我们可以使用一个开源的工具,叫做 gym,是由 open ai 开发的。在这个库中从简单的走格子到毁灭战士,提供了各种各样的游戏环境可以让大家放自己的 AI 进去玩耍。取名叫 gym 也很有意思,可以想象一群 AI原创 2021-09-02 23:30:48 · 2304 阅读 · 0 评论 -
Pytorch Note49 Q-learning
Pytorch Note49 Q-learning文章目录Pytorch Note49 Q-learningQ Learning 介绍q-learning 的原理状态和动作Q-learning 算法单步演示全部笔记的汇总贴:Pytorch Note 快乐星球Q Learning 介绍在增强学习中,有一种很有名的算法,叫做 q-learning,我们下面会从原理入手,然后通过一个简单的小例子讲一讲 q-learning。q-learning 的原理我们使用一个简单的例子来导入 q-learning原创 2021-08-26 18:13:23 · 2458 阅读 · 1 评论 -
Pytorch Note48 DCGAN生成人脸
Pytorch Note48 DCGAN生成人脸文章目录Pytorch Note48 DCGAN生成人脸生成对抗网络什么是 GAN?什么是 DCGAN?导入所需要的库输入数据实现权重初始化生成器判别器损失函数和优化器训练结果损失与训练迭代可视化`G`的进度真实图像和伪图像全部笔记的汇总贴:Pytorch Note 快乐星球生成对抗网络什么是 GAN?之前已经对GAN有了一个简单的介绍,并且对生成对抗网络的数学原理进行了一个较为简单的推导。详细可以查看Note45 生成对抗网络,里面对GAN进行了一原创 2021-08-22 21:29:16 · 2270 阅读 · 7 评论 -
Pytorch Note47 Imporving GAN
Pytorch Note47 Imporving GAN文章目录Pytorch Note47 Imporving GANLeast Squares GANDeep Convolutional GANs卷积判别网络卷积生成网络全部笔记的汇总贴:Pytorch Note 快乐星球在这一部分,我们介绍一些改善的生成对抗网络,因为简单的生成对抗网络存在一些问题,所以我们研究是否可以改善网络结构或者损失函数来解决这些问题。Least Squares GANLeast Squares GAN 比最原始的 GA原创 2021-08-20 19:39:36 · 2221 阅读 · 2 评论 -
Pytorch Note46 生成对抗网络的数学原理
Pytorch Note46 生成对抗网络的数学原理文章目录Pytorch Note46 生成对抗网络的数学原理全部笔记的汇总贴:Pytorch Note 快乐星球之前介绍了什么是生成对抗,接下来会用严格的数学语言证明生成对抗网络的合理性。详细也可以查看GAN的论文Generative Adversarial Networks首先介绍一下KL divergence,这是统计学的一个概念,用来衡量两种概率分布的相似程度,数值越小,表示两种概率分布越接近。分别有离散的概率分布和连续的概率分布,定义如原创 2021-08-19 21:28:51 · 2226 阅读 · 4 评论 -
Pytorch Note45 生成对抗网络(GAN)
Pytorch Note45 生成对抗网络(GAN)文章目录Pytorch Note45 生成对抗网络(GAN)GANsDiscriminator NetworkGenerator Network简单版本的生成对抗网络判别网络生成网络全部笔记的汇总贴:Pytorch Note 快乐星球2014年,深度学习三巨头之一 lan Goodfellow 提出了生成对抗网络( GenerativeAdversarial Networks, GANs)这一概念,刚开始并没有引起轰动,直到2016年,学界、业界对它原创 2021-08-13 21:32:10 · 2361 阅读 · 19 评论 -
Pytorch Note44 变分自动编码器(VAE)
Pytorch Note44 变分自动编码器(VAE)文章目录Pytorch Note44 变分自动编码器(VAE)变分自动编码器重参数定义VAE训练全部笔记的汇总贴:Pytorch Note 快乐星球变分自动编码器变分编码器是自动编码器的升级版本,其结构跟自动编码器是类似的,也由编码器和解码器构成。回忆一下,自动编码器有个问题,就是并不能任意生成图片,因为我们没有办法自己去构造隐藏向量,需要通过一张图片输入编码我们才知道得到的隐含向量是什么,这时我们就可以通过变分自动编码器来解决这个问题。其实原创 2021-08-11 09:22:22 · 2331 阅读 · 10 评论 -
Pytorch Note43 自动编码器(Autoencoder)
Pytorch Note43 自动编码器(Autoencoder)文章目录Pytorch Note43 自动编码器(Autoencoder)自动编码器数据预处理定义网络开始训练可视化卷积神经网络 Autoencoder全部笔记的汇总贴:Pytorch Note 快乐星球自动编码器自动编码器最开始是作为一种数据压缩方法,同时还可以在卷积网络中进行逐层预训练,但是随后更多结构复杂的网络,比如 resnet 的出现使得我们能够训练任意深度的网络,自动编码器就不再使用在这个方面,下面我们讲一讲自动编码器的一原创 2021-08-11 09:17:49 · 2524 阅读 · 2 评论 -
Pytorch Note42 LSTM 做词性预测
Pytorch Note42 LSTM 做词性预测文章目录Pytorch Note42 LSTM 做词性预测模型介绍编码构建单个字符的 lstm 模型构建词性分类的 lstm 模型开始训练预测全部笔记的汇总贴:Pytorch Note 快乐星球模型介绍对于一个单词,会有这不同的词性,首先能够根据一个单词的后缀来初步判断,比如 -ly 这种后缀,很大概率是一个副词,除此之外,一个相同的单词可以表示两种不同的词性,比如 book 既可以表示名词,也可以表示动词,所以到底这个词是什么词性需要结合前后文来具原创 2021-08-05 21:44:58 · 2346 阅读 · 8 评论 -
Pytorch Note41 N-Gram 模型
Pytorch Note41 N-Gram 模型文章目录Pytorch Note41 N-Gram 模型单词预测的 Pytorch 实现定义模型测试结果全部笔记的汇总贴:Pytorch Note 快乐星球首先我们介绍一下 N-Gram 模型的原理和其要解决的问题。对于一句话,单词的排列顺序是非常重要的,所以我们能否由前面的几个词来预测后面的几个单词呢,比如 ‘I lived in France for 10 years, I can speak _’ 这句话中,我们能够预测出最后一个词是 French原创 2021-08-04 00:12:57 · 2305 阅读 · 0 评论 -
Pytorch Note40 词嵌入(word embedding)
Pytorch Note40 词嵌入(word embedding)文章目录Pytorch Note40 词嵌入(word embedding)词嵌入PyTorch 实现Skip-Gram 模型模型结构全部笔记的汇总贴:Pytorch Note 快乐星球词嵌入前面讲了循环神经网络做简单的图像分类问题和飞机流量时序预测,但是现在循环神经网络最火热的应用是自然语言处理,下面我们介绍一下自然语言处理中如果运用循环神经网络,首先我们介绍一下第一个概念,词嵌入。对于图像分类问题,我们可以使用 one-hot原创 2021-08-04 00:17:25 · 2324 阅读 · 8 评论 -
Pytorch Note39 RNN 序列预测
Pytorch Note39 RNN 序列预测文章目录Pytorch Note39 RNN 序列预测数据预处理创建数据集定义模型训练及测试全部笔记的汇总贴:Pytorch Note 快乐星球前面我们讲到使用 RNN 做简单的图像分类的问题,但是 RNN 并不擅长此类问题,下面我们讲一讲如何将 RNN 用到时间序列的问题上,因为对于时序数据,后面的数据会用到前面的数据,LSTM 的记忆特性非常适合这种场景。据会用到前面的数据,LSTM 的记忆特性非常适合这种场景。首先我们可以读入数据,这个数据是 10原创 2021-08-03 12:20:36 · 2776 阅读 · 5 评论 -
Pytorch Note38 RNN 做图像分类
Pytorch Note38 RNN 做图像分类文章目录Pytorch Note38 RNN 做图像分类图片分类全部笔记的汇总贴:Pytorch Note 快乐星球图片分类RNN 特别适合做序列类型的数据,那么 RNN 能不能想 CNN 一样用来做图像分类呢?下面我们用 mnist 手写字体的例子来展示一下如何用 RNN 做图像分类,但是这种方法并不是主流,这里我们只是作为举例。首先需要将图片数据转化为一个序列数据,MINST手写数字图片的大小是28x28,那么可以将每张图片看作是长为28的序列,原创 2021-07-30 01:30:50 · 2693 阅读 · 5 评论 -
Pytorch Note37 PyTorch 中的循环神经网络模块
Pytorch Note37 PyTorch 中的循环神经网络模块文章目录Pytorch Note37 PyTorch 中的循环神经网络模块标准RNNRNNCellRNNLSTMGRU全部笔记的汇总贴:Pytorch Note 快乐星球标准RNN在标准的RNN的内部网络中,计算公式如下:ht=tanh(wih∗xt+bih+whh∗ht−1+bhh)h_t=\tanh(w_{ih}*x_t+b_{ih}+w_{hh}*h_{t-1}+b_{hh})ht=tanh(wih∗xt+bih原创 2021-07-30 01:30:43 · 2279 阅读 · 1 评论 -
Pytorch Note36 循环神经网络的变式:LSTM和GRU
Pytorch Note36 循环神经网络的变式:LSTM和GRU文章目录Pytorch Note36 循环神经网络的变式:LSTM和GRU循环神经网络长期依赖(Long-Term Dependencies)问题LSTM 网络LSTM 的核心思想逐步理解 LSTMLSTM 的变体GRU全部笔记的汇总贴:Pytorch Note 快乐星球循环神经网络人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有原创 2021-07-30 01:30:32 · 2330 阅读 · 0 评论 -
Pytorch Note35 正则化
Pytorch Note35 正则化文章目录Pytorch Note35 正则化正则化加正则项不加正则项全部笔记的汇总贴:Pytorch Note 快乐星球正则化前面我们讲了数据增强和 dropout,而在实际使用中,现在的网络往往不使用 dropout,而是用另外一个技术,叫正则化。正则化是机器学习中提出来的一种方法,有 L1 和 L2 正则化,目前使用较多的是 L2 正则化,引入正则化相当于在 loss 函数上面加上一项,比如f=loss+λ∑p∈params∣∣p∣∣22f = loss原创 2021-07-27 01:19:59 · 2242 阅读 · 25 评论 -
Pytorch Note34 学习率衰减
Pytorch Note34 学习率衰减文章目录Pytorch Note34 学习率衰减使用库函数调整学习率scheduler.step()等间隔调整学习率 StepLR按需调整学习率 MultiStepLR指数衰减调整学习率 ExponentialLR余弦退火函数调整学习率 CosineAnnealingLR根据指标调整学习率 ReduceLROnPlateau自定义调整学习率 LambdaLR手动调整学习率得到学习率全部笔记的汇总贴:Pytorch Note 快乐星球对于基于一阶梯度进行优化的方法原创 2021-07-25 23:04:54 · 2701 阅读 · 4 评论 -
Pytorch Note33 数据增强
Pytorch Note33 数据增强文章目录Pytorch Note33 数据增强常用的数据增强方法随机比例放缩随机位置截取随机的水平和竖直方向翻转随机角度旋转亮度、对比度和颜色的变化总结全部笔记的汇总贴:Pytorch Note 快乐星球前面我们已经讲了几个非常著名的卷积网络的结构,但是单单只靠这些网络并不能取得 state-of-the-art 的结果,现实问题往往更加复杂,非常容易出现过拟合的问题,而数据增强的方法是对抗过拟合问题的一个重要方法,可以提高模型的准确率和泛化能力。2012 年原创 2021-07-24 00:35:28 · 2212 阅读 · 3 评论 -
Pytorch Note32 稠密连接的卷积网络 DenseNet
Pytorch Note32 稠密连接的卷积网络 DenseNet文章目录Pytorch Note32 稠密连接的卷积网络 DenseNetDenseNetDense BlockDenseNet 的网络结构代码实现BottleneckTransitionDenseNet全部笔记的汇总贴:Pytorch Note 快乐星球DenseNet之前的ResNet通过前层与后层的“短路连接”(Shortcuts),加强了前后层之间的信息流通,在一定程度上缓解了梯度消失现象,从而可以将神经网络搭建得很深。更进一原创 2021-07-28 19:33:58 · 2513 阅读 · 23 评论 -
Pytorch Note31 深度残差网络 ResNet
Pytorch Note31 深度残差网络 ResNet文章目录Pytorch Note31 深度残差网络 ResNetResNet残差结构ResNet18/34 的Residual结构ResNet50/101/152的Bottleneck结构ResNet网络结构配置代码实现BasicBlockBottleneck BlockResNet全部笔记的汇总贴:Pytorch Note 快乐星球ResNet当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在原创 2021-07-25 20:36:46 · 2707 阅读 · 2 评论 -
Pytorch Note30 更加丰富化结构的网络 GoogLeNet
Pytorch Note30 更加丰富化结构的网络 GoogLeNet文章目录Pytorch Note30 更加丰富化结构的网络 GoogLeNetGoogLeNetInception 模块代码实现定义基本层结构定义Inception定义辅助分类器Aux定义GoogLetNet全部笔记的汇总贴:Pytorch Note 快乐星球GoogLeNetVGG 是 2014 年 ImageNet 比赛的亚军,那么冠军是谁呢?就是我们马上要讲的 GoogLeNet,这是 Google 的研究人员提出的网络结构原创 2021-07-23 17:10:13 · 2269 阅读 · 7 评论 -
Pytorch Note29 使用重复元素的深度网络 VGG
Pytorch Note29 使用重复元素的深度网络 VGG文章目录Pytorch Note29 使用重复元素的深度网络 VGGCIFAR 10VGGNet全部笔记的汇总贴:Pytorch Note 快乐星球计算机视觉是一直深度学习的主战场,从这里我们将接触到近几年非常流行的卷积网络结构,网络结构由浅变深,参数越来越多,网络有着更多的跨层链接,首先我们先介绍一个数据集 cifar10,我们将以此数据集为例介绍各种卷积网络的结构。CIFAR 10cifar 10 这个数据集一共有 50000 张训练原创 2021-07-21 19:15:08 · 2268 阅读 · 1 评论 -
Pytorch Note28 Pytorch的卷积模块
Pytorch Note28 Pytorch的卷积模块文章目录Pytorch Note28 Pytorch的卷积模块卷积层池化层全部笔记的汇总贴:Pytorch Note 快乐星球卷积网络在计算机视觉领域被应用得非常广泛,那么常见的卷机网络中用到的模块能够使用 pytorch 非常轻松地实现,下面我们来讲一下 pytorch 中的卷积模块卷积层卷积在 pytorch 中有两种方式,一种是 torch.nn.Conv2d(),一种是 torch.nn.functional.conv2d(),这两种形原创 2021-07-21 17:35:33 · 2296 阅读 · 3 评论 -
Pytorch Note27 卷积设计的一些经验总结
Pytorch Note27 卷积设计的一些经验总结文章目录Pytorch Note27 卷积设计的一些经验总结小滤波器的有效性网络的尺寸全部笔记的汇总贴:Pytorch Note 快乐星球小滤波器的有效性一般而言,几个小滤波器卷积层的组合比一个大滤波器卷积层要好,比如层层堆叠了3个3x3的卷积层,中间含有非线性激活层,在这种排列下面,第一个卷积层中每个神经元对输人数据的感受野是3x3,第二层卷积层对第一层卷积层的感受野也是3x3,这样对于输人数据的感受野就是5x5,同样,第三层卷积层上对第二层卷积原创 2021-07-21 17:10:13 · 2257 阅读 · 0 评论 -
Pytorch Note26 卷积神经网络
Pytorch Note26 卷积神经网络全部笔记的汇总贴:Pytorch Note 快乐星球在卷积神经网络中,有三个观点很重要局部性对于一张图片而言,需要检测图片中的特征来决定图片的类别,通常情况下这些特征都不是由整张图片决定的,而是由一些局部的区域决定的:比如下图中的中的鸟喙,该特征只存在于图片的局部中。相同性对不同图片,如果它们有同样特征,这些特征出现在图片不同的位置,也就是说可用同样的检测模式去检测不同图片的相同特征,不过这些特征处于图片中不同的位置,但是特征检测所做的操作几儿乎一样原创 2021-07-21 17:03:42 · 2245 阅读 · 6 评论 -
Pytorch Note24 防止过拟合
Pytorch Note24 防止过拟合文章目录Pytorch Note24 防止过拟合正则化Dropout全部笔记的汇总贴:Pytorch Note 快乐星球在我们的深度学习中,有时候由于我们的网络的容量过大或者数据集过少会造成过拟合,但是防止过拟合的最佳方法不是减少网络容量,下面讲解几个具体的方法来防止我们的过拟合正则化L2正则化是正则化(rcgularization)中比较常用的形式,它的想法是对于权重过大的部分进行惩罚,也就是直接在损失函数中增加权重的二范数量级,也就是引入w2,其中入是正原创 2021-07-20 22:29:29 · 2354 阅读 · 1 评论 -
Pytorch Note23 参数初始化
Pytorch Note23 参数初始化文章目录Pytorch Note23 参数初始化全0初始化随机初始化稀疏初始化初始化偏置(Bias)批标准化(Batch Normalization)torch.nn.init全部笔记的汇总贴:Pytorch Note 快乐星球除了数据的预处理外,在进入网络训练之前,我们还需要作参数的预处理。参数初始化对模型具有较大的影响,不同的初始化方式可能会导致截然不同的结果,所幸的是很多深度学习的先驱们已经帮我们探索了各种各样的初始化方式,所以我们只需要学会如何对模型的原创 2021-07-20 22:03:06 · 2276 阅读 · 0 评论 -
Pytorch Note22 数据预处理
Pytorch Note22 数据预处理文章目录Pytorch Note22 数据预处理中心化标准化PCA白噪声总结全部笔记的汇总贴:Pytorch Note 快乐星球中心化数据预处理中一个最常见的处理办法就是每个特征维度减去相应的均值实现中心化,这样可以使得数据变成0均值,特别对于一些图像数据,为了方便我们将所有的数据都减去一个相同的值。标准化使得数据都变成0均值之后,还需要使用标准化的做法让数据不同的特征维度都有着相同的规模。有两种常用的方法:一种是除以标准差,这样可以使得新数据的分布接近标原创 2021-07-20 14:00:24 · 2244 阅读 · 0 评论