问题描述
玩家在游戏中开宝箱有概率获得装备A和B,开一次宝箱需要100游戏币,每次只能获得一个道具,其中获得装备A的概率5%,获得装备B的概率为15%。请问,玩家在放回随机的条件下获得一套A和B,需要游戏币的期望是多少?请写出计算过程。
解题思路
- 列举可能性,探索规律(统计数量)‘
- 考虑抽取顺序(排序去重)
计算开箱次数的公式:
num=∑a=2na×[∑b=1a−1Ca−1b×(0.05×0.15b+0.15×0.05b)×0.8a−1−b]num = \sum_{a=2}^na\times[\sum_{b=1}^{a-1}C_{a-1}^b\times(0.05\times0.15^b+0.15\times0.05^b)\times0.8^{a-1-b}]num=∑a=2na×[