风险策略分析工作是风险管理的重要工作内容,其工作内容需要涉及风控领域中多个环节及细节内容,包含贷前策略调整、策略分析调优、贷中业务监控、贷后策略调整等模块内容。
监控这些风控策略,我们用得最多的就是各种数据监控报表,如以下:
贷前的数据监控为例,最常见的几类监控报表,或多或少大家都应该有接触:
①运营渠道监控
②产品监控
③产品监控-授信页面
④风控数据监控
⑤风控数据监控
⑥人工审核拒绝分布
⑦复贷率
⑧规则包监控表
一.常规化的监控报表
贷前的监控报表主要是反馈业务数据情况,包括整体业务流程的产品转化率/通过率/拒绝率、获客成本、渠道进件量、拒绝原因、额度使用情况等等报表,多个报表因素可以相互融合,以相关的线上业务报表为示例跟大家一一介绍:
①运营渠道监控—示例
②产品监控—示例
③产品监控-授信页面—示例
④风控数据监控—示例
⑤人工审核拒绝分布—示例
⑥复贷率—示例
⑦复贷率—示例
⑧规则包监控表—示例
各位小伙伴都经常用过这里的哪些监控报表呢?
在以上各种监控维度中,跟风控较为相关也是目前各位童鞋比较关注的应该算是规则相关的监控报表。就如上述所提及,策略是我们提及最多的高频词,策略由规则组成。日常工作中,我们常常在规则中寻找最优规则;然后再通过数据,一步步地精准定位调整最优的规则。
所以相信大家也一定会对规则的挖掘比较关注。在风控策略制定中,我们经常需要寻找一条最有效的规则来把控风险,一条有效的策略不仅可以帮公司降低风险,提高效率,同时也是策略人员最基本的素养。第二部分,也是本文的干货部分,给各位策略童鞋分享如何制定一个有效的策略。
二.规则的挖掘
规则的挖掘,通常我们会将数据整理到一张多维度的宽表里。宽表里有在策略里部署的各种的维度,也有相关的标签,本次为了方便大家理解,我们相关的规则简化为到三个维度,分别是:性别、年龄、收入
然后我们通过可视化化的决策树来自动寻找最优的规则。
该数据集整体样本量32W,做相关的风控策略挖掘绰绰有余,该数据集包括上述的三个维度(性别、年龄、收入)以及最重要的好坏标签定义:
以下我们详细介绍具体实操步骤:
第一步:导入具体的数据模块跟数据集等
本次我们使用可视化工具包Graphviz,来实现决策树的规则的自动化挖掘,核心是基于sklearn中的tree.export_graphviz模块将决策树模型转换成dot文件,并且将原始的dot文件相关内容修改成风控规则需要的指标,最后便能实现自动化的决策树生产内容。
我们分别定义了三个函数来挖掘策略规则:
function1:基于sklearn中的tree.export_graphviz模块将决策树模型转换成dot文件(str)
function2:将原始的dot文件相关内容修改成风控规则需要的指标
function3:融合前面两个函数的功能,集成为一键生成的规则函
第二步:模型训练
在完成以上三个函数定义后,已经完成了工作的80%,接下来,并可以进行具体的模型模型训练营,并输出相关结果内容:
dot文件转换并输出PDF
第三步:结果分析
在相关的决策树的挖掘过程中,我们可以看到最终在某个根节点中,挖掘到的坏账率大概是8.63%,
,这个坏账比最开始的坏账4.75%高了近一倍。在实际的工作中,客户命中这条规则时,我们通常都会拒绝:
决策对比:
在以上的决策树参数中,是可以调整相关的参数,比如当我们将决策树深度调整到5层时候:
clf=tree.DecisionTreeClassifier(max_depth=5,min_samples_split=50,min_samples_leaf=50)
可以看到,我们能挖掘到更对的规则,但同时需要注意的是这些对应的规则也更容易过拟合。
关于本文中所提及的具体的代码,文末留言:决策树,添加管理员领取。本文相关的代码跟数据集,也已经共享至知识星球后台,各位星球同学可以移步知识星球下载学习。
以上所提及的报表、决策树模型等相关内容,关于具体的这些报表使用与说明细则,有兴趣的童鞋可关注-
《第五期的番茄风控全线条训练营》:
~原创文章
…
end