连续数据的离散化

离散化的优势

在特征工程中,我们常常需要对连续型特征进行离散化处理,下面对离散化的优势做简单总结:

  • 映射到高维度空间,用linear的LR更快,且兼具更好的分割性
  • 稀疏化,0,1向量内积乘法运算速度快,计算结果方便存储,容易扩展
  • 单变量离散化N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合
  • 离散特征的增加和减少都很容易,易于模型的快速迭代
  • 模型稳定,收敛度高,对异常数据有很强的鲁棒性(比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰)
  • 在一定程度上降低了过拟合风险
  • 离散化后可以进行特征交叉,由M+N个变量变为 M ∗ N M*N M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值