离散化的优势
在特征工程中,我们常常需要对连续型特征进行离散化处理,下面对离散化的优势做简单总结:
- 映射到高维度空间,用linear的LR更快,且兼具更好的分割性
- 稀疏化,0,1向量内积乘法运算速度快,计算结果方便存储,容易扩展
- 单变量离散化N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合
- 离散特征的增加和减少都很容易,易于模型的快速迭代
- 模型稳定,收敛度高,对异常数据有很强的鲁棒性(比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰)
- 在一定程度上降低了过拟合风险
- 离散化后可以进行特征交叉,由M+N个变量变为 M ∗ N M*N M∗