双指针技巧广泛应用于数组、链表等线性数据结构的问题中,通过使用两个指针在数据结构中协同移动,可以高效地解决许多看似复杂的问题。本文我将全面介绍双指针的基本概念、算法原理、经典案例分析与实现。
基本概念
双指针技巧是指在遍历数据结构时,使用两个指针协同工作,从而在不需要额外空间的情况下优化时间复杂度。双指针通常分为以下两种类型:
-
对撞指针:两个指针分别从数组的两端开始向中间移动,直到相遇。适用于有序数组的问题。
-
快慢指针:两个指针以不同的速度移动,通常用于链表中的环检测、中间节点查找等问题。(主页搜索,有写过专题)
对撞指针的算法原理
对撞指针(Opposite Direction Pointers)通常用于解决有序数组或链表中的问题。基本思路是:
- 初始化两个指针,一个指向数组的起始位置(左指针),另一个指向数组的末尾位置(右指针)。
- 根据问题的条件,移动左指针向右或右指针向左。
- 当两个指针相遇时,遍历结束。
对撞指针的核心在于利用问题的特性(如数组有序),通过合理移动指针来减少不必要的遍历,从而将时间复杂度从 O ( n 2 ) O(n²) O(n2)优化到 O ( n ) O(n) O(n)。
典型案例分析与实现
两数之和(有序数组)
题目描述:给定一个已按照升序排列的有序数组,找到两个数使得它们相加之和等于目标数。返回这两个数的下标(从1开始)。
解题思路:使用对撞指针,左指针指向数组起始位置,右指针指向数组末尾。如果两数之和小于
目标值,左指针右移
;如果大于
目标值,右指针左移
;如果相等,则找到结果。
public int[] twoSum(int[] numbers, int target) {
int left = 0, right = numbers.length - 1;
while (left < right) {
int sum = numbers[left] + numbers[right];
if (sum == target) {
return new int[]{left + 1, right + 1}; // 下标从1开始
} else if (sum < target) {
left++; // 和太小,左指针右移
} else {
right--; // 和太大,右指针左移
}
}
return new int[]{-1, -1}; // 没有找到符合条件的数对
}
验证回文串
题目描述:给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写。
解题思路:使用对撞指针,左指针指向字符串的起始位置,右指针指向字符串的末尾。跳过非字母和数字的字符,比较两个指针指向的字符是否相等(忽略大小写)。
public boolean isPalindrome(String s) {
int left = 0, right = s.length() - 1;
while (left < right) {
// 跳过非字母和数字的字符
while (left < right && !Character.isLetterOrDigit(s.charAt(left))) {
left++;
}
while (left < right && !Character.isLetterOrDigit(s.charAt(right))) {
right--;
}
// 比较字符(忽略大小写)
if (Character.toLowerCase(s.charAt(left)) != Character.toLowerCase(s.charAt(right))) {
return false;
}
left++;
right--;
}
return true;
}
盛最多水的容器
题目描述:给定n个非负整数a₁,a₂,…,aₙ,每个数代表坐标中的一个点(i,aᵢ)。在坐标内画n条垂直线,垂直线i的两个端点分别为 ( i , a i ) (i,aᵢ) (i,ai)和 ( i , 0 ) (i,0) (i,0)。找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的水。
解题思路:使用对撞指针,左指针指向数组起始位置,右指针指向数组末尾。容器的容积由较短的垂直线和两指针之间的距离决定。每次移动较短的垂直线对应的指针,以寻找更大的容积
。
public int maxArea(int[] height) {
int left = 0, right = height.length - 1;
int maxArea = 0;
while (left < right) {
int currentArea = Math.min(height[left], height[right]) * (right - left);
maxArea = Math.max(maxArea, currentArea);
// 移动较短的垂直线对应的指针
if (height[left] < height[right]) {
left++;
} else {
right--;
}
}
return maxArea;
}
三数之和
题目描述:给定一个包含 n n n个整数的数组nums,判断nums中是否存在三个元素 a a a, b b b, c c c,使得 a + b + c = 0 a + b + c = 0 a+b+c=0?找出所有满足条件且不重复的三元组。
解题思路:先对数组进行排序
,然后遍历数组,将每个元素作为三元组的第一个元素
。对于每个元素,使用对撞指针在剩余元素中寻找另外两个元素,使得它们的和等于当前元素的相反数。
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
if (nums == null || nums.length < 3) {
return result;
}
// 对数组进行排序
Arrays.sort(nums);
int n = nums.length;
for (int i = 0; i < n - 2; i++) {
// 跳过重复的第一个元素
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int target = -nums[i];
int left = i + 1, right = n - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == target) {
result.add(Arrays.asList(nums[i], nums[left], nums[right]));
// 跳过重复的第二个元素
while (left < right && nums[left] == nums[left + 1]) {
left++;
}
// 跳过重复的第三个元素
while (left < right && nums[right] == nums[right - 1]) {
right--;
}
left++;
right--;
} else if (sum < target) {
left++;
} else {
right--;
}
}
}
return result;
}
复杂度分析
对撞指针算法的时间复杂度通常为 O ( n ) O(n) O(n),其中n为数组或字符串的长度。这是因为每个指针最多遍历一次数据结构。空间复杂度为 O ( 1 ) O(1) O(1),因为只需要使用常数级的额外空间。
总结与扩展
核心思想总结
对撞指针通过在有序数组的两端设置指针并相向移动,利用数组的有序性减少不必要的遍历,从而高效解决问题。
适用场景
对撞指针适用于以下类型的问题:
- 有序数组中的元素对或三元组问题。
- 字符串中的回文串验证。
- 数组中的区间问题。
注意事项
- 在处理
重复元素
时,需要适当跳过以避免结果重复。 - 在移动指针前,要确保指针
不越界
。
That’s all, thanks for reading!
觉得有用就点个赞
、收进收藏
夹吧!关注
我,获取更多干货~