
数据结构与算法分析
文章平均质量分 95
我爱算法,算法爱我(bushi
GG不是gg
The best time to plant a tree is 20 years ago. The second-best time is now.欢迎关注微信公众号:码农烧烤摊
一起分享技术的快乐!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数位DP详解
数位DP(Digit Dynamic Programming)是一种专门解决“数字计数问题”的动态规划方法,尤其适用于处理“小于等于N的数中满足某条件的数有多少个”这类问题。由于数字的位数通常不超过20位,数位DP能通过状态压缩将看似复杂的计数问题转化为高效的DP求解。原创 2025-08-20 12:30:00 · 1099 阅读 · 0 评论 -
动态规划-决策路径追踪
动态规划的经典应用通常聚焦于“求解最优值”(如最大利润、最短路径长度),但在实际问题中,我们往往还需要知道“如何达到这个最优值”——即决策路径。例如:在最短路径问题中,不仅要知道最短距离,还需明确具体的路径;在背包问题中,不仅要知道最大价值,还需知道选择了哪些物品。原创 2025-08-20 12:00:00 · 983 阅读 · 0 评论 -
动态规划进阶:转移方程优化技巧全解
动态规划(DP)的核心是“定义状态+推导转移方程”,但很多时候,基础的转移方程会导致时间复杂度偏高,难以应对大规模输入,此时转移方程的优化就成为突破性能瓶颈的关键。本文我将系统讲解动态规划中常用的转移方程优化技巧,包括单调队列优化、斜率优化、前缀和优化、状态压缩与矩阵加速等,并结合具体案例解析其原理与实现。原创 2025-08-08 22:18:16 · 660 阅读 · 0 评论 -
状压DP-子集枚举技巧
在状压DP中“子集枚举”是处理集合相关问题的核心操作,许多场景需要遍历某个状态的所有子集(如“从已选元素中拆分出一个子集进行转移”“枚举子集计算贡献”),直接暴力枚举会导致时间复杂度爆炸。原创 2025-08-07 19:17:59 · 1147 阅读 · 0 评论 -
状压DP-基本框架
状态压缩动态规划(Bitmask DP)是解决“小规模集合选择”问题的高效方法,当问题涉及对有限元素的子集进行状态描述时,传统DP的多维状态会导致空间爆炸,而状压DP通过二进制位表示集合状态,将高维状态压缩为一个整数,显著降低空间复杂度。原创 2025-08-06 21:02:41 · 1276 阅读 · 0 评论 -
树形DP进阶:结合dfn序的线性化树问题求解技巧
树形DP求解中,我们常遇到需要频繁处理“子树区间查询”“多子树合并”或“树与线性结构交互”的问题,这类问题单纯依靠递归遍历往往难以高效实现,而dfn序(深度优先搜索序号) 作为将树结构转化为线性结构的桥梁,能显著降低问题复杂度。本文我将深入解析dfn序与树形DP的结合技巧,通过“树的线性化表示”“子树区间映射”“前缀和优化”等核心方法,并结合经典案例详解其在复杂树问题中的应用。原创 2025-08-04 21:35:12 · 1300 阅读 · 0 评论 -
一文看懂DFS序、DFN序与欧拉序
树与图的算法中,序列化是将复杂结构转化为线性序列的重要手段,而基于深度优先搜索(DFS)的遍历序列更是高频出现,其中DFS序、DFN序和欧拉序是比较容易混淆的三种序列,今天我们将彻底理清它们的关系。原创 2025-08-03 23:34:11 · 1008 阅读 · 0 评论 -
树形DP-核心基础
树形动态规划(Tree DP)是动态规划在树结构上的应用,它结合了树的递归特性与DP的“分解子问题”思想,专门用于解决树结构中的最优解问题。从“树的最大独立集”到“二叉树的直径”,从“树上背包”到“树的中心”,树形DP都发挥着核心作用。本文我将从树形DP的基础概念出发,详解其核心思想、实现步骤、经典案例及解题技巧,结合代码实现与实例推演,带你入门这一重要的算法领域。原创 2025-07-31 23:29:51 · 1132 阅读 · 0 评论 -
区间DP求解策略详解
区间动态规划(Interval Dynamic Programming)是动态规划中一类重要的分支,专门用于解决区间上的最优问题。与线性DP(如0/1背包)按元素顺序推进不同,区间DP通过“划分区间、合并子问题”的思路,高效求解区间内的最优解,广泛应用于字符串处理、矩阵运算、区间调度等场景。原创 2025-07-29 22:19:32 · 1144 阅读 · 0 评论 -
背包DP之混合背包
实际的背包问题中,物品往往不会是单一类型——可能既有“只能选一次”的0/1背包物品,又有“可无限选”的完全背包物品,还有“最多选k次”的多重背包物品,这种“混合背包”模型更贴近现实场景(如“限量商品+常规商品+限购商品”的组合),但求解时需要整合多种背包的处理逻辑。原创 2025-07-28 20:29:25 · 1264 阅读 · 0 评论 -
背包DP之多重背包
背包问题模型中多重背包是介于0/1背包(每种物品1个)和完全背包(每种物品无限个)之间的中间态——它允许每种物品选择有限次(如每种物品最多选3个),这种模型更贴近现实场景(如“商品限购”“物资有限”),但解法复杂度更高。本文我将从多重背包的核心模型出发,详解基础解法、二进制优化、实现步骤及变种应用,并结合代码与实例推演,带你掌握多重背包问题的高效解法。原创 2025-07-27 23:28:37 · 1061 阅读 · 0 评论 -
背包DP之树形背包(有依赖的背包)
背包问题中,0/1背包、完全背包等基础模型假设物品之间相互独立,但实际场景中物品常存在依赖关系——例如“购买手机必须先购买充电器”“选择某课程必须先选择其先修课”。这类“有依赖的背包问题”中,最典型的是树形背包:物品以树结构组织,子节点依赖父节点(必须选择父节点才能选择子节点)。本文我将从树形背包的核心模型出发,详解状态设计、递推逻辑、实现步骤及优化技巧,并结合代码与实例,帮你掌握这一进阶背包问题。原创 2025-07-25 22:13:00 · 832 阅读 · 0 评论 -
背包DP之完全背包
完全背包以“物品可无限选用”的特性区别于其他背包DP模型,它广泛应用于“不限数量的物品选择”场景——如“用无限硬币凑金额”“不限次数的物品采购”等。本文我将从完全背包的核心模型出发,详解状态设计、递推逻辑、优化技巧及变种应用,并结合代码与实例推演,帮你彻底掌握这一经典背包问题。原创 2025-07-25 22:11:32 · 1193 阅读 · 0 评论 -
背包DP之分组背包
分组背包在基础背包的基础上增加了“分组”约束——物品被划分为若干组,每组中最多选择一个物品,这种模型广泛应用于“互斥选择”场景(如“从多个套餐中选一个”“从多类工具中选一种”)。本文我将从分组背包的核心模型出发,详解状态设计、递推逻辑、实现步骤及优化技巧,并结合代码与实例,帮你掌握这一实用的背包变种。原创 2025-07-24 23:38:19 · 1077 阅读 · 0 评论 -
背包DP之0/1背包
0/1背包问题是动态规划(DP)领域的经典问题,也是理解“状态转移”和“空间优化”的绝佳案例,看似简单——给定物品和背包容量,选择物品装入背包使总价值最大(每个物品只能选一次),但其中蕴含的DP设计思想可推广到大量组合优化问题。原创 2025-07-23 23:38:41 · 1109 阅读 · 0 评论 -
最长递增子序列(LIS)问题详解
最长递增子序列(Longest Increasing Subsequence,简称LIS)是动态规划领域的经典问题,它看似简单——在一个无序数组中找到最长的严格递增子序列(子序列无需连续),但背后隐藏着从暴力到高效的多种解法思路。本文我将系统解析LIS问题的核心逻辑,从基础的动态规划到优化的“二分查找+贪心”解法,并结合代码实现、复杂度分析及变种拓展全面解读。原创 2025-07-23 23:18:44 · 1216 阅读 · 0 评论 -
三维DP深度解析
在动态规划的进阶学习中,当问题的复杂度上升——需要同时考虑“多个独立维度的状态变化”(如“时间+选择+持有状态”“体积+重量+数量”)时,一维或二维DP已无法清晰刻画子问题关系。这时,三维DP成为解决问题的关键工具。它通过三个维度的状态定义,将复杂问题拆解为可递推的子问题,适用于处理多约束、多状态的场景。原创 2025-07-22 23:59:01 · 1187 阅读 · 0 评论 -
二维DP深度解析
在动态规划(DP)的学习中,一维DP是基础,但实际问题往往需要处理更复杂的依赖关系——比如两个字符串的对比、二维网格中的路径规划等,此时二维DP(使用二维数组存储状态)成为解决问题的关键,它通过定义“二维状态”来刻画子问题的特征,能更自然地表达“两个维度的依赖关系”(如“前i个字符”与“前j个字符”的关联)。原创 2025-07-21 23:23:38 · 1048 阅读 · 0 评论 -
一维DP深度解析
动态规划(Dynamic Programming,DP)是算法设计中的重要思想,通过将复杂问题分解为重叠子问题,并利用子问题的解高效推导原问题答案。其中一维动态规划是最基础也最常用的形式——仅需一个一维数组存储子问题的解,就能“以空间换时间”解决一系列经典问题。原创 2025-07-21 23:12:51 · 1357 阅读 · 0 评论 -
最大子数组和问题-详解Kadane算法
最大子数组和(Maximum Subarray Sum)是一个经典且高频的数组算法考点,这个问题看似简单——从一个整数数组中找到和最大的连续子数组,但暴力求解的效率极低。Kadane算法(卡丹算法)作为专门解决此问题的高效方法,能在O(n)时间内完成求解,是动态规划思想的典型应用。本文我将深入解析Kadane算法的核心原理、实现细节、变种拓展及实际应用,结合Java代码示例,帮你彻底掌握这一高效算法。原创 2025-07-20 23:48:58 · 1226 阅读 · 0 评论 -
单调队列深度解析(下)
在《单调队列深度解析(上)》中,我已经对单调队列的基本定义、算法思想、结构性质、使用步骤以及基本模板进行了详细的介绍。在本文中,我将深入探讨单调队列的进阶应用,包括在图论、动态规划等复杂场景中的使用,帮助大家对单调队列有更深刻的理解和更灵活的运用。原创 2025-07-19 23:13:33 · 1273 阅读 · 0 评论 -
最小生成树算法详解
图论与网络优化中,最小生成树(Minimum Spanning Tree,MST)是一类重要问题,它能在连接所有节点的前提下,找到总权重最小的边集合,广泛应用于通信网络布线、管道铺设、电路设计等场景(核心需求是“用最少成本连接所有节点”)。原创 2025-07-18 21:12:54 · 903 阅读 · 0 评论 -
双向广搜算法详解
常规广度优先搜索(BFS)中,当搜索空间较大时,算法可能需要遍历大量节点才能找到目标,效率较低,双向广搜(Bidirectional BFS)作为BFS的优化算法,通过从起点和终点同时开始搜索,在中间相遇时终止,能显著减少搜索的节点数量,大幅提升搜索效率。原创 2025-07-18 18:30:00 · 972 阅读 · 0 评论 -
分层图最短路径算法详解
在最短路径问题中,我们经常遇到带约束条件的场景——比如“最多允许k次将边权变为0”“最多使用k次加速道具”等,这类问题无法用普通的最短路径算法直接解决,而**分层图最短路径算法**通过“状态分层”的思想,将带约束的问题转化为普通最短路径问题,成为解决这类场景的核心工具。原创 2025-07-17 22:19:54 · 1001 阅读 · 0 评论 -
详解SPFA算法-单源最短路径求解
当图中存在负权边但无负权回路时,Dijkstra算法不再适用,而Bellman-Ford算法虽能处理却效率较低。SPFA(Shortest Path Faster Algorithm)算法作为Bellman-Ford的优化版本,通过队列筛选待更新节点,大幅提升了求解效率,在通信网络路由规划、交通路径优化等场景中被广泛应用。原创 2025-07-17 00:00:02 · 15003 阅读 · 3 评论 -
A*算法详解
从游戏中的角色寻路到机器人导航,从地图软件的路线规划到无人机路径优化,A*算法都发挥着核心作用,本文我将深入解析A*算法的核心原理、实现步骤、启发函数设计及实际应用,并结合Java代码示例,带你全面掌握这一路径搜索算法。原创 2025-07-15 23:46:03 · 2750 阅读 · 0 评论 -
洪水填充算法详解
洪水填充算法(Flood Fill Algorithm),也被称为种子填充算法,从Photoshop的"油漆桶工具"到扫雷游戏的空白区域扩展,再到医学图像分析中的区域分割,洪水填充算法都发挥着核心作用原创 2025-07-02 22:34:56 · 2187 阅读 · 0 评论 -
单调队列深度解析(上)
单调队列是一种特殊的数据结构,它在普通队列先进先出的基础上,保证队列内元素单调递增或单调递减。单调队列主要用于处理滑动窗口相关问题,例如在一个长度固定的滑动窗口内,快速找到最大值、最小值等原创 2025-07-01 00:22:31 · 1124 阅读 · 0 评论 -
单调栈一文深度解析
单调栈是一种专门处理元素间序关系的高效数据结构,它通过维护栈内元素的单调性,能够在线性时间内解决诸如下一个更大/小元素系列经典问题。本文我将从单调栈的核心原理出发,结合经典案例,解析并总结其解题模板及优化技巧,帮你掌握这一高效解题工具原创 2025-06-28 23:47:30 · 1135 阅读 · 0 评论 -
双指针技巧深度解析
双指针技巧广泛应用于数组、链表等线性数据结构的问题中,通过使用两个指针在数据结构中协同移动,可以高效地解决许多看似复杂的问题。本文我将全面介绍双指针的基本概念、算法原理、经典案例分析与实现原创 2025-06-27 23:53:44 · 1281 阅读 · 0 评论 -
快慢指针深度解析
快慢指针是一种常用技巧,尤其在链表和数组问题中应用广泛,我们通过使用两个速度不同的指针遍历数据结构,快慢指针能够在O(n)时间复杂度内解决许多看似需要O(n²)时间复杂度的问题。本文我将全面介绍快慢指针的基本概念、算法原理以及经典案例分析与实践原创 2025-06-27 23:35:59 · 1531 阅读 · 0 评论 -
由浅入深详解前缀树-Trie树
前缀树Trie Tree作为一种高效的字符串存储与检索数据结构,以其独特的树形组织方式和优异的前缀匹配性能,在搜索引擎自动补全、拼写检查、词频统计、网络路由等众多场景中发挥着关键作用。本文我将全面探讨前缀树的核心原理、数据结构设计、基本操作实现、应用场景分析及优化技巧,结合Java代码实现与实战案例,带你全面掌握这一重要数据结构原创 2025-06-22 23:57:38 · 1250 阅读 · 0 评论 -
一文详解归并分治算法
归并分治算法是基于归并排序的思想,通过“分而治之”的策略,将复杂问题分解为若干个规模较小、易于解决的子问题,分别求解子问题后再将结果合并,从而高效地解决原问题。本文我将深入介绍归并分治算法的核心原理、实现细节、经典应用案例、优化技巧以及相关拓展,并结合Java代码实现,帮你全面掌握这一重要算法原创 2025-06-21 23:55:51 · 1269 阅读 · 0 评论 -
一文全面剖析回溯算法
回溯是一种经典且强大的算法思想,常用于解决组合搜索、排列组合、路径规划等一系列复杂问题,它通过深度优先搜索(DFS)的方式,系统地探索问题的所有可能解,并在搜索过程中根据问题的约束条件及时“回溯”,避免无效搜索,从而高效地找到满足要求的解。本文我将全面介绍回溯算法的核心原理、实现步骤、经典应用场景、优化技巧以及常见变体原创 2025-06-20 23:40:48 · 1689 阅读 · 0 评论 -
一文带你全面了解和使用位图
位图(Bitmap)作为位运算的经典应用之一,通过巧妙地利用二进制位来表示数据的存在性或状态,实现了对大规模数据的高效存储与处理,从海量数据去重、数据压缩,到高效的查找与统计,位图以其独特的优势被广泛使用。本文我将全面探讨位图的原理、构建方法、操作技巧等要点,并结合Java代码实现,带您全面掌握这一强大的技术原创 2025-06-19 23:33:12 · 930 阅读 · 0 评论 -
LCA最近公共祖先问题详解
图论和树结构中最近公共祖先(Least Common Ancestor,LCA)是一个经典的问题,本文我将详细介绍LCA问题的常见求解算法、优化策略,并结合Java代码示例,带你全面掌握这一重要算法问题的求解方法原创 2025-06-11 23:23:49 · 1188 阅读 · 0 评论 -
快速排序算法改进:随机快排-荷兰国旗划分详解
快速排序是经典的平均时间复杂度O(n)的排序算法,而随机快排结合荷兰国旗划分(Dutch National Flag Partitioning)的优化策略,进一步提升了性能和稳定性。本文我将深入剖析随机快排 - 荷兰国旗划分的原理、实现细节、性能分析以及实际应用场景,带你全面掌握这一强大的排序技术原创 2025-06-09 21:14:46 · 945 阅读 · 0 评论 -
随机算法一文深度全解
随机算法凭借独特的随机决策机制,为复杂问题提供高效解决方案。本文我将围绕三种核心随机算法、并引入问题剖析与多语言实现展开,帮你全面掌握这一重要算法原创 2025-06-08 23:40:12 · 1477 阅读 · 0 评论 -
详解二叉树遍历的非递归实现
非递归遍历通过使用栈、队列等辅助数据结构,以迭代的方式模拟递归过程,从而避免了递归调用带来的栈溢出风险和高空间复杂度问题。非递归实现不仅能够更有效地利用内存资源,还能在一定程度上提升算法的执行效率,使得程序在处理大型数据时更加稳定和高效原创 2025-06-07 18:58:35 · 1072 阅读 · 0 评论 -
最长回文子串问题-Manacher算法深度解析
求解最长回文子串的传统方法如暴力枚举、动态规划虽然能解决问题,但在时间复杂度上存在一定局限。Manacher 算法以其巧妙的预处理方式和利用回文串对称性的优化策略,高效地解决了最长回文子串问题原创 2025-06-06 23:29:28 · 939 阅读 · 0 评论