
pandas
文章平均质量分 93
玩转Python数据分析。掌握Series、DataFrame操作,实现数据清洗、处理与分析全流程。
GG不是gg
The best time to plant a tree is 20 years ago. The second-best time is now.欢迎关注微信公众号:码农烧烤摊
一起分享技术的快乐!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pandas-特征工程详解
特征工程其质量直接决定模型性能,优质的特征能让简单模型达到复杂模型的效果,而劣质特征则可能导致模型失效,Pandas提供了丰富的函数用于特征提取、转换和选择。本文我将系统讲解如何利用Pandas进行特征工程,从数据类型转换到高级特征创建,覆盖特征工程的全流程关键技术。原创 2025-07-14 23:29:41 · 886 阅读 · 0 评论 -
Pandas-数据选择与过滤
在数据处理过程中,我们很少需要对整个数据集进行操作,更多时候是针对特定的行、列或满足条件的子集进行分析,Pandas提供了灵活强大的数据选择与过滤工具,能够根据标签、位置、条件等多种方式精准提取数据。本文我将系统讲解Pandas中数据选择与过滤的核心方法,从基础的列选择到复杂的多条件过滤,帮你高效获取所需数据子集。原创 2025-07-14 18:35:17 · 976 阅读 · 0 评论 -
Pandas-数据清洗与处理
数据清洗与处理往往占据最多的时间,现实世界中的数据很少是完美的——它们可能包含缺失值、异常值、重复记录,或是格式混乱、命名不规范的字段。Pandas作为Python数据处理的瑞士军刀,提供了强大而灵活的工具来应对这些问题。原创 2025-07-13 22:26:50 · 1047 阅读 · 0 评论 -
Pandas-数据查看与质量检查
数据分析流程中,拿到数据后的第一步不是急于建模或可视化,而是全面了解数据——包括数据规模、结构、取值分布以及潜在的质量问题。Pandas作为数据处理的利器,提供了一系列简洁高效的工具,帮助我们快速完成数据查看与质量检查。本文我将系统讲解如何用Pandas洞察数据特征、识别常见质量问题(如缺失值、异常值),为后续分析奠定坚实基础。原创 2025-07-12 20:54:20 · 1198 阅读 · 0 评论 -
Pandas-数据加载与保存
Pandas作为Python数据处理的核心库,提供了丰富的API用于读取和写入各种格式的数据,从常见的CSV、Excel到专业的SQL、Parquet文件,几乎覆盖了所有主流数据存储格式。本文我将系统讲解Pandas中数据加载与保存的核心方法,并结合实例详解参数配置与性能优化,带你高效处理数据输入输出。原创 2025-07-12 16:56:32 · 832 阅读 · 0 评论