
《Halcon学习》
文章平均质量分 85
Halcon学习
X-Vision
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
3D手眼标定本质及应用
3D手眼标定技术解析 手眼标定是机器人视觉系统的关键技术,主要分为"眼在手中"和"眼在手外"两种模式。眼在手中模式将相机安装在机器人末端,标定目标为求解相机到工具坐标系的变换矩阵T_cam^tool;眼在手外模式则将相机固定在工作场景中,标定目标为相机到基坐标系的变换矩阵T_cam^base。标定流程包括:标定板选择(棋盘格/CharuCo板/圆点阵列)、数据采集(至少15个位姿)、相对运动计算、方程求解(常用Tsai-Lenz算法)和精度验证。OpenCVSharp原创 2025-07-28 17:09:34 · 921 阅读 · 0 评论 -
Halcon 中 .tiff 图像文件详解
本文介绍了Halcon库处理TIFF图像的方法,包括单页/多页TIFF的读取和写入、图像属性检查、灰度/RGB图像处理、16位/浮点格式转换等核心操作。详细提供了HDevelop语言的代码示例,如使用read_image读取文件、threshold进行图像分割、tiff_write_image保存多页TIFF等。同时总结了路径格式、字节序处理、异常捕获等注意事项,并针对常见问题提供了解决方案(如内存不足时检查图像尺寸)。这些方法可帮助用户高效完成各类TIFF图像处理任务。原创 2025-07-23 09:38:20 · 256 阅读 · 0 评论 -
3D手眼标定全流程详解
摘要: 手眼标定是连接机器人与3D视觉系统的关键技术,用于建立相机与机器人基座/工具间的精确坐标转换。流程包括:1)硬件准备(工业机器人、3D相机、高精度标定板等);2)环境搭建(均匀照明、稳定支架);3)标定步骤(相机内参标定→多姿态数据采集→坐标系定义→矩阵计算→误差验证)。关键要点包括:位姿采集需覆盖80%工作空间、标定误差应小于预期精度2倍(如目标0.1mm时误差需<0.2mm)。典型应用场景涵盖精密装配、动态抓取等,建议每3个月或工艺变更后重新标定。通过规范操作可实现<0.1mm的定位原创 2025-07-22 16:23:35 · 1405 阅读 · 0 评论 -
3D位姿定义解析(halcon)
本文解析了HALCON 3D位姿的核心定义与应用。位姿由平移分量(Tx,Ty,Tz)和旋转分量(Rx,Ry,Rz)组成,采用欧拉角ZYX顺序表示旋转。文章详细说明了坐标系定义、齐次变换矩阵计算,并提供了HALCON算子使用示例。特别强调了旋转顺序敏感性、方向混淆陷阱等关键注意事项,同时给出可视化验证和调试技巧。理解这些概念对实现精确的3D视觉定位至关重要,特别是在机器人手眼标定等应用中,需严格验证坐标转换链的正确性。原创 2025-07-22 15:35:06 · 693 阅读 · 0 评论