【Pytorch学习】-- 显示和处理数据 -- TensorBoard&Transforms

本文介绍了如何使用PyTorch中的Tensor数据类型处理图像数据,包括将图像转换为Tensor、利用TensorBoard显示图像以及使用Transforms进行数据预处理的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习视频:https://www.bilibili.com/video/BV1hE411t7RN?p=1,内含环境搭建

Tensor数据类型

通常,使用pytorch处理数据时,通常都会将其转化为tensor数据类型,因此,建议可以先了解下Tensor数据类型,官方文档介绍视频

显示和处理数据

TensorBoard官方文档
Transforms官方文档

  1. 当我们读取数据之后,需要查看数据时,可以借助TensorBoard 工具来实现。可以把TensorBoard看作一个网站,我们往其中写入我们要显示的数据即可。
  2. 而我们要显示图片时,要借助torchvision下的Transforms的把图片转化为Tensor类型,才可以在TensorBoard显示

代码:

from torchvision import transforms # 导入Transforms包,用于将数据转化为Tensor
from PIL import Image

# 导入图片并打开
img_path = "/content/drive/MyDrive/Pytorch学习/dataset/train/ants/0013035.jpg" 
img = Image.open(img_path)

使用transforms将数据转换成Tensor类型时,要先实力化一个transforms对象,类似于在transforms工具箱中取出对应的工具。

# ToTensor官方描述:Convert a PIL Image or numpy.ndarray to tensor. 
# 将一个PIL Image数据类型或numpy.ndarray数据类型的数据转为tensor
tensor_trans = transforms.ToTensor() 		
tensor_img = tensor_trans(img)

借助TensorBoard显示出来

from torch.utils.tensorboard import SummaryWriter	# 导入tensorboard对应的库
writer = SummaryWriter("logs")						# 在同名目录下生成一个"logs"的文件夹,来保存对应数据
writer.add_image("Tensor_img",tensor_img)			# 两个参数,第一个参数时标题,第二个是数据
print(tensor_img)									# 具体看看这个tensor数据类型有什么
tensor([[[0.3137, 0.3137, 0.3137,  ..., 0.3176, 0.3098, 0.2980],
         [0.3176, 0.3176, 0.3176,  ..., 0.3176, 0.3098, 0.2980],
         [0.3216, 0.3216, 0.3216,  ..., 0.3137, 0.3098, 0.3020],
         ...,
         [0.3412, 0.3412, 0.3373,  ..., 0.1725, 0.3725, 0.3529],
         [0.3412, 0.3412, 0.3373,  ..., 0.3294, 0.3529, 0.3294],
         [0.3412, 0.3412, 0.3373,  ..., 0.3098, 0.3059, 0.3294]],

        [[0.5922, 0.5922, 0.5922,  ..., 0.5961, 0.5882, 0.5765],
         [0.5961, 0.5961, 0.5961,  ..., 0.5961, 0.5882, 0.5765],
         [0.6000, 0.6000, 0.6000,  ..., 0.5922, 0.5882, 0.5804],
         ...,
         [0.6275, 0.6275, 0.6235,  ..., 0.3608, 0.6196, 0.6157],
         [0.6275, 0.6275, 0.6235,  ..., 0.5765, 0.6275, 0.5961],
         [0.6275, 0.6275, 0.6235,  ..., 0.6275, 0.6235, 0.6314]],

        [[0.9137, 0.9137, 0.9137,  ..., 0.9176, 0.9098, 0.8980],
         [0.9176, 0.9176, 0.9176,  ..., 0.9176, 0.9098, 0.8980],
         [0.9216, 0.9216, 0.9216,  ..., 0.9137, 0.9098, 0.9020],
         ...,
         [0.9294, 0.9294, 0.9255,  ..., 0.5529, 0.9216, 0.8941],
         [0.9294, 0.9294, 0.9255,  ..., 0.8863, 1.0000, 0.9137],
         [0.9294, 0.9294, 0.9255,  ..., 0.9490, 0.9804, 0.9137]]])

打开终端,在同一目录下输入

tensorboard --logdir=logs

根据终端提示,打开对应地址,即可看到图片
请添加图片描述

其余Transforms的使用

Normalize

用均值或者标准差对一个tensor类型的数据进行归一化处理

Resize

顾名思义,重新调整图片尺寸

Compose

不改变长宽比下调整尺寸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值