学习视频:https://www.bilibili.com/video/BV1hE411t7RN?p=1,内含环境搭建
Tensor数据类型
通常,使用pytorch处理数据时,通常都会将其转化为tensor数据类型,因此,建议可以先了解下Tensor数据类型,官方文档和介绍视频。
显示和处理数据
TensorBoard官方文档
Transforms官方文档
- 当我们读取数据之后,需要查看数据时,可以借助TensorBoard 工具来实现。可以把TensorBoard看作一个网站,我们往其中写入我们要显示的数据即可。
- 而我们要显示图片时,要借助torchvision下的Transforms的把图片转化为Tensor类型,才可以在TensorBoard显示
代码:
from torchvision import transforms # 导入Transforms包,用于将数据转化为Tensor
from PIL import Image
# 导入图片并打开
img_path = "/content/drive/MyDrive/Pytorch学习/dataset/train/ants/0013035.jpg"
img = Image.open(img_path)
使用transforms将数据转换成Tensor类型时,要先实力化一个transforms对象,类似于在transforms工具箱中取出对应的工具。
# ToTensor官方描述:Convert a PIL Image or numpy.ndarray to tensor.
# 将一个PIL Image数据类型或numpy.ndarray数据类型的数据转为tensor
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
借助TensorBoard显示出来
from torch.utils.tensorboard import SummaryWriter # 导入tensorboard对应的库
writer = SummaryWriter("logs") # 在同名目录下生成一个"logs"的文件夹,来保存对应数据
writer.add_image("Tensor_img",tensor_img) # 两个参数,第一个参数时标题,第二个是数据
print(tensor_img) # 具体看看这个tensor数据类型有什么
tensor([[[0.3137, 0.3137, 0.3137, ..., 0.3176, 0.3098, 0.2980],
[0.3176, 0.3176, 0.3176, ..., 0.3176, 0.3098, 0.2980],
[0.3216, 0.3216, 0.3216, ..., 0.3137, 0.3098, 0.3020],
...,
[0.3412, 0.3412, 0.3373, ..., 0.1725, 0.3725, 0.3529],
[0.3412, 0.3412, 0.3373, ..., 0.3294, 0.3529, 0.3294],
[0.3412, 0.3412, 0.3373, ..., 0.3098, 0.3059, 0.3294]],
[[0.5922, 0.5922, 0.5922, ..., 0.5961, 0.5882, 0.5765],
[0.5961, 0.5961, 0.5961, ..., 0.5961, 0.5882, 0.5765],
[0.6000, 0.6000, 0.6000, ..., 0.5922, 0.5882, 0.5804],
...,
[0.6275, 0.6275, 0.6235, ..., 0.3608, 0.6196, 0.6157],
[0.6275, 0.6275, 0.6235, ..., 0.5765, 0.6275, 0.5961],
[0.6275, 0.6275, 0.6235, ..., 0.6275, 0.6235, 0.6314]],
[[0.9137, 0.9137, 0.9137, ..., 0.9176, 0.9098, 0.8980],
[0.9176, 0.9176, 0.9176, ..., 0.9176, 0.9098, 0.8980],
[0.9216, 0.9216, 0.9216, ..., 0.9137, 0.9098, 0.9020],
...,
[0.9294, 0.9294, 0.9255, ..., 0.5529, 0.9216, 0.8941],
[0.9294, 0.9294, 0.9255, ..., 0.8863, 1.0000, 0.9137],
[0.9294, 0.9294, 0.9255, ..., 0.9490, 0.9804, 0.9137]]])
打开终端,在同一目录下输入
tensorboard --logdir=logs
根据终端提示,打开对应地址,即可看到图片
其余Transforms的使用
Normalize
用均值或者标准差对一个tensor类型的数据进行归一化处理
Resize
顾名思义,重新调整图片尺寸
Compose
不改变长宽比下调整尺寸