python机器学习之sklearn库(7.逻辑回归模型)

本文主要介绍了Python机器学习库sklearn中的逻辑回归模型。逻辑回归是一种线性分类器,源于线性回归,常用于解决分类问题。文章涉及了Sigmod函数、损失函数、梯度下降和正则化等内容,并探讨了逻辑回归的API使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归

 

回归模型是用来处理和预测连续型标签的算法。然而逻辑回归,是一种名为“回归”的线性分类器,其本质是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。要理解逻辑回归从何而来,得要先理解线性回归。线性回归是机器学习中最简单的的回归算法,它写作一个几乎人人熟悉的方程(为了更好理解本节后面的讲解到的sigmod函数,下面的回归函数用z来表示):

Sigmod函数

 逻辑函数的损失函数

 梯度下降

 正则化

 逻辑回归API

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值