Python量化---Numpy模块(random)1.2

本文详细介绍了Numpy库中的一维数组处理,包括默认浮点类型、linspace和reshape函数的使用。同时,讲解了位运算符&与逻辑运算符and的区别,以及round、floor、ceil、rint等取整函数。此外,还提到了modf用于拆分整数和小数,以及isnan和isinf函数检查NaN和Inf。文章还探讨了如何去除数组中的nan和inf,并列举了random模块的各种随机数生成方法。这些内容对于理解和高效使用Numpy进行数值计算至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 **一维数组默认都是浮点类型!**

np.linspace()   # 前包后包

reshape()   #改变原行列类型

& 和 and   在Numpy中不一样,&是位运算。

round()函数:四舍五入

floor()函数:向下取整

ceil()函数:向上取整

rint()函数:向零取整

modf()函数:拆分整数和小数返回两份数组

innan()函数:查询是否有nan

ininf()函数:查询是否有inf

maximun()函数:对比2个数组中的最大值

minimun()函数:对比2个数组中的最小值

nan(Not a NUmber)     不等于任何浮点数

inf(infinity)   比任何浮点数都大 

去除一维数组中的nan或inf:1.x [x!=np.nan]  2.x[~np.isnan(x)]

random函数

 random.random()         # 随机返回0到1的一个浮点数

random.randint(x,y)      # 返回x到y之间随机的一个整数

random.choice([x,y,z])  #  返回参数中的一个随机数

random.shuffle()            #  打乱参数的所有值

在Numpy中的用法

np.random.randomint(x,y,z)    # 在random基础上还可以增加选取个数或(x,y,z,(m,n))多维数组

np.random.rand()                     #  可以接受参数给定

np.random.choice()                  # 可以接受参数给定个数

np.random.uniform()                # 可以接受参数给定个数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值