PYQT Delaunay triangulation 互动编程

本文介绍了DelaunayTriangulation在2D平面上生成均匀点分布的作用,以及如何通过Lloydrelaxation改进点的分布,减少尖锐的多边形形状。通过Python的numpy库创建随机点,然后利用Delaunay算法进行三角剖分。通过迭代执行近似的Lloydrelaxation,使点更均匀分布,从而得到平滑的多边形。此外,文章还提到了处理边界拉伸问题的策略,包括去除扭曲的多边形和添加固定点。最后,展示了如何在pyqt5环境下实现交互式图形界面来操作这些算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Delaunay Triangulation 能干什么?
有限元计算 架空地图设计(procedural map) 几何图像生成 实在是算法学中重量级的算法

在2D平面上均匀散布点
用numpy形成均匀网格

self.point_count = 100
self.points = np.random.uniform(-400,400,(self.point_count,2))

使用reb blob games中提供的算法,获得的多边形比较尖锐,
未松弛的网格

The polygon shapes and sizes are a bit irregular. Random numbers are more “clumpy” than what people expect. I want something closer to semi-random “blue noise”, or quasirandomness, not random points. I approximate that by using a variant of Lloyd relaxation, which is a fairly simple tweak to the random point locations to make them more evenly distributed. Lloyd relaxation replaces each point by the centroid of the polygon. In my code I merely average the corners (see improveRandomPoints). Here’s the result after running approximate Lloyd relaxation twice:

意思大概是:产生的多边形形状和大小比我们的预期有些不规则,使用一种 Lloyd relaxation 方法进行网格松弛。在 Lloyd relaxation 方法中,会把新多边形的几何中心替换原来的随机点,作者这里使用了一种近似与Lloyd relaxation 的方法,经过两次迭代达到类似于 Lloyd relaxation效果。

到底如何才能,作者没具体写,至于作者提到的centroid ,到底是几何中心还是质心,也不清楚,真是欲言又止啊。

centroid={xc=1n∑i=1nxiyc=1n∑i=1nyi centroid = \begin{cases} x_c =\frac{1}{n}\sum_{i=1}^{n} x_i \\ y_c =\frac{1}{n}\sum_{i=1}^{n} y_i \end{cases} centroid={xc=n1i=1nxiyc=n1i=1nyi

计算多边形中心,非常粗糙的几何中心,可以认为用几何中心作为多边形的centroid,当然是有误差的

cx,cy = 0,0
for ie in range(0, len(vertices)):
    cx = cx + vertices[ie][0]
    cy = cy + vertices[ie][1]

cx = cx/len(vertices)
cy = cy/len(vertices)

将新的点集合,重新使用Delaunay算法,经过两次迭代后,可以看到原先尖锐的多边形明显圆滑起来,尖角现象消除,随机性还是有的,这是我们需要的
松弛网格

边界
缩小后,边界拉伸的问题比较严重,因为边界没有支撑点,被松弛后,边界无法保持,这里有两方法可以

  1. 刻意去除扭曲比较大的多边形
  2. 在多边形加入固定点,防止拉伸后变形

如何使用本案例

Delaunay Triangulation 算法基于pyqt5 gui 互动编程
涉及到的算法如下

  • 均匀分布 基于numpy
  • Delaunay Triangulation 使用和结构渲染
  • Lloyd relaxation 松弛网格

默认100个点,需要修改请 point_count = <数值>

操作说明:

空格 :形成Delaunay Triangulation网格并Lloyd relaxation 松弛网格
V:形成Delaunay Triangulation网格
左键:移动点并自动Delaunay化
右键:移动画布
鼠标滚轮:缩放画布

边界noise二分化处理

def div_quad(self,quad):
	if dist(quad[0], quad[3])<10:
		return [quad]
	k = .4+random.random()*.3
	cut = self.interp(quad[1], quad[3], k)
	v1 =  self.interp(quad[0], quad[1], 0.5)
	v2 =  self.interp(quad[0], quad[3], 0.5)
	quad1 = [quad[0],v1,cut,v2]

	v3 =  self.interp(quad[1], quad[2], 0.5)
	v4 =  self.interp(quad[3], quad[2], 0.5)
	quad2 = [cut,v3,quad[2],v4]
	return [quad1,quad2]

def interp(self,a,b,k):
	x = k*a[0]+(1-k)*b[0]
	y = k*a[1]+(1-k)*b[1]
	return [x,y]

def draw_costa(self,quad,painter):
    painter.drawLine(quad[0][0],quad[0][1],quad[2][0],quad[2][1])

def paintEvent(self,event):
    quad = [self.quad]
    # divide
    for j in range(8):
        qr = []
        for qq in quad:
            qarr = self.div_quad(qq)
            qr = qr + qarr
        quad = qr

    for qj in quad:
        self.draw_costa(qj,painter) 

二分法形成不规则边界
在这里插入图片描述
结合在一起可以形成不规则的边界,如下图
map

说明

  • 为了能运行本案例,请自行安装python环境 和相关包,具体配置和安装在本文中不涉及也无需涉及,本案例不支大部分智能设备
  • 算法未经严格优化,只为了说明算法的使用方法
  • 本案例应用于非严肃领域,数值结果和算法探讨请@我,如需转载请注明
<think>好的,用户现在问的是“需要手动来对图片进行网格变形”,我需要先理解他们的需求。之前的对话中,用户已经询问过是否可以用Python实现类似Photoshop的网格变形效果,并且得到了一个详细的步骤和代码示例。现在用户的问题更偏向于是否需要手动操作,可能他们想知道在实现这种变形时是否需要手动调整网格点,或者是否有自动的方法。 首先,我应该回顾之前的回答。之前的回答提到了通过代码生成初始网格,并手动修改目标网格点,比如移动中心点。这说明在示例中确实需要手动指定目标点的位置。用户现在可能想知道是否必须手动操作,或者有没有更自动化的方法,或者他们可能对如何手动操作的具体步骤感兴趣。 接下来,我需要考虑用户可能的真实需求。他们可能希望了解手动调整网格的过程,或者想确认在Python实现网格变形是否需要大量的手动干预,或者是否有现成的工具可以简化这个过程。此外,用户可能对交互式的网格变形工具感兴趣,比如如何在Python中创建一个GUI界面,让用户可以通过拖拽控制点来变形图像。 然后,我应该分析用户的问题。用户的问题是“需要手动来对图片进行网格变形”,这可能有两种解读:一种是询问是否需要手动操作,另一种是询问如何手动操作。根据之前的回答,示例代码中的目标网格确实是手动修改的,所以需要明确说明在Python实现中,手动调整网格点的位置是其中的一部分。 接下来,我需要组织回答的结构。首先,确认手动操作的必要性,然后详细说明手动调整网格的步骤,可能涉及GUI界面,以及如何将手动调整后的网格应用到图像上。此外,可能需要讨论自动变形与手动变形的区别,以及各自的适用场景。 还需要考虑用户的技术水平。之前的回答提供了代码示例,用户可能具备一定的编程能力,因此可以继续提供代码示例,但需要确保解释清晰,尤其是关于如何手动调整控制点的部分。如果用户希望实现交互式的拖拽功能,可能需要引入GUI库如PyQt或Tkinter,并说明如何结合这些库与图像处理代码。 另外,用户可能对性能优化感兴趣,尤其是在处理大图像或需要实时反馈的情况下。因此,可能需要提到优化技巧,如使用NumPy向量化操作、GPU加速,或者多分辨率处理,以提升手动调整时的响应速度。 还要注意用户可能的误解。例如,他们可能认为手动调整网格需要复杂的数学知识,但实际上通过控制点的移动和插值算法,可以简化这一过程。因此,需要强调库和工具的作用,如OpenCV和SciPy,它们已经封装了复杂的数学运算,用户只需关注控制点的调整。 最后,需要总结手动网格变形的适用场景,比如精确控制局部变形,或艺术创作中的特定需求,同时指出自动方法(如基于特征点的变形)可能更适合其他情况。这样用户可以根据自己的需求选择合适的方法。</think>以下是关于 **手动实现图片网格变形** 的详细说明,包含核心原理、实现步骤和交互式方案: --- ### **一、是否需要手动操作?** 网格变形的核心在于 **控制点的移动**。是否需要手动操作取决于目标: - **自动变形**:通过算法自动计算控制点位移(如人脸形变、图像对齐) - **手动变形**:用户直接拖动网格点(如Photoshop的**操控变形**工具) **Python实现手动网格变形的核心需求**: 1. 可视化网格覆盖在图像上 2. 支持用户交互(点击、拖拽控制点) 3. 实时更新变形效果 --- ### **二、手动网格变形的实现步骤** #### **步骤1:构建交互式界面** 使用GUI库(如PyQt、Tkinter)创建可交互画布: ```python # 示例:PyQt5界面框架 from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel from PyQt5.QtGui import QPixmap, QPainter, QPen, QColor class ImageWindow(QMainWindow): def __init__(self, img_path): super().__init__() self.setup_ui(img_path) self.control_points = [] # 存储控制点坐标 def setup_ui(self, img_path): self.image_label = QLabel(self) self.pixmap = QPixmap(img_path) self.image_label.setPixmap(self.pixmap) self.setCentralWidget(self.image_label) def paintEvent(self, event): # 绘制网格和控制点 painter = QPainter(self) painter.setPen(QPen(QColor(255, 0, 0), 2)) # 绘制网格线... # 绘制控制点... ``` #### **步骤2:网格控制点管理** ```python # 控制点数据结构示例 class ControlPoint: def __init__(self, x, y): self.x = x # 当前坐标 self.y = y self.orig_x = x # 原始坐标 self.orig_y = y self.dragging = False # 初始化网格(5x5示例) def init_control_points(img_width, img_height, rows=5, cols=5): points = [] for i in np.linspace(0, img_height, rows): for j in np.linspace(0, img_width, cols): points.append(ControlPoint(j, i)) return points ``` #### **步骤3:变形算法实现(反向映射)** ```python def manual_warp(image, src_points, dst_points): """ :param src_points: 原始控制点列表 :param dst_points: 拖动后的控制点列表 """ # 换为NumPy数组 src = np.array([[p.orig_x, p.orig_y] for p in src_points]) dst = np.array([[p.x, p.y] for p in dst_points]) # 计算三角剖分(Delaunay Triangulation) tri = Delaunay(src) # 对每个三角形区域进行仿射变换 warped = image.copy() for simplex in tri.simplices: src_tri = src[simplex] dst_tri = dst[simplex] transform = cv2.getAffineTransform(src_tri.astype(np.float32), dst_tri.astype(np.float32)) # 应用变换到对应区域... return warped ``` --- ### **三、关键技术细节** #### 1. **变形插值方法对比** | 方法 | 优点 | 缺点 | |------------------|---------------------------|-----------------------| | 仿射变换 | 计算快,适合小变形 | 无法处理复杂曲面 | | 薄板样条插值(TPS)| 平滑自然,适合大范围变形 | 计算复杂度高(O(n^3))| | 移动最小二乘法(MLS)| 局部控制灵活 | 需要参数调优 | #### 2. **实时优化技巧** - **局部更新**:只重新计算被拖动点影响的区域 - **多线程处理**:GUI响应与变形计算分离 - **OpenGL加速**:使用pyOpenGL渲染变形效果 --- ### **四、完整工作流程** 1. 加载图像并初始化网格 2. 用户拖拽控制点修改网格形状 3. 实时计算变形后的像素映射 4. 双线性/双三次插值生成结果图像 ```mermaid graph TD A[加载图像] --> B[绘制初始网格] B --> C{用户交互检测} C -->|拖拽控制点| D[更新目标点坐标] D --> E[计算位移场] E --> F[生成变形图像] F --> G[刷新显示] G --> C ``` --- ### **五、现成解决方案推荐** 1. **OpenCV + PyQt** 组合: ```python # 使用OpenCV的remap函数实现高效变形 map_x, map_y = compute_remap(...) result = cv2.remap(img, map_x, map_y, cv2.INTER_CUBIC) ``` 2. **Matplotlib交互模式**(快速原型): ```python from matplotlib.widgets import Slider, Button fig, ax = plt.subplots() plt.subplots_adjust(left=0.25, bottom=0.25) ax.imshow(img) # 添加控制点拖动事件 def on_press(event): # 检测是否点击到控制点... fig.canvas.mpl_connect('button_press_event', on_press) ``` 3. **专业库**: - `vedo`:提供基于VTK的交互式网格变形 - `pygfx`:WebGPU加速的实时变形 --- ### **六、注意事项** 1. **性能瓶颈**:纯Python循环无法处理高清图像,需结合C扩展 ```python # 使用Cython加速关键循环 %load_ext Cython %%cython def cython_remap(...): # 实现高速像素映射计算 ``` 2. **形变保真度**: - 添加约束条件(如网格边不可交叉) - 使用RBF(径向基函数)插值保持平滑性 3. **商业级方案**: - 采用多分辨率金字塔处理 - 集成CUDA加速(如Numba、CuPy) --- 通过上述方法,可以用Python实现完整的手动网格变形系统,但需要权衡开发成本与性能需求。对于非实时需求,基于控制点的方案完全可行;若需要Photoshop级别的交互体验,建议结合C++核心模块与Python界面。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值