树:n(n≥0)个结点的有限集合。
当n=0时,称为空树;
任意一棵非空树满足以下条件:
⑴ 有且仅有一个特定的称为根的结点;
⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。
结点的度:结点所拥有的子树的个数。
树的度:树中各结点度的最大值。
叶子结点:度为0的结点,也称为终端结点。
分支结点:度不为0的结点,也称为非终端结点。
孩子、双亲:树中某结点子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点;
兄弟:具有同一个双亲的孩子结点互称为兄弟。
路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1至nk的路径;路径上经过的边的个数称为路径长度。
祖先、子孙:在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。
结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。
树的深度:树中所有结点的最大层数,也称高度。
层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。
有序树、无序树:如果一棵树中结点的各子树从左到右是有次序的,称这棵树为有序树;反之,称为无序树。
森林:m (m≥0)棵互不相交的树的集合。
同构:对两棵树,若通过对结点适当地重命名,就可以使这两棵树完全相等(结点对应相等,结点对应关系也相等),则称这两棵树同构。
前序遍历:树的前序遍历操作定义为:
若树为空,不进行遍历;否则
⑴ 访问根结点;
⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。
后序遍历:树的后序遍历操作定义为:
若树为空,则遍历结束;否则
⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树;
⑵ 访问根结点。
层序遍历:树的层序遍历操作定义为:
从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。
树的存储结构
1.双亲表示法:
基本思想:
用一维数组来存储树的各个结点(一般按层序存储),
数组中的一个元素对应树中的一个结点,
每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。
顺序存储:本质上是静态指针
双亲表示法
双亲、孩子表示法
链式存储:
多重链表示法
孩子链表表示法
孩子兄弟表示法
二叉树
二叉树是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
斜树
1 .所有结点都只有左子树的二叉树称为左斜树;
2 .所有结点都只有右子树的二叉树称为右斜树;
3.左斜树和右斜树统称为斜树。
满二叉树
在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上。
完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中的位置完全相同。
完全二叉树的特点:
- 叶子结点只能出现在最下两层,且最下层的叶子结点都集中在二叉树的左部;
- 完全二叉树中如果有度为1的结点,只可能有一个,且该结点只有左孩子。
- 深度为k的完全二叉树在k-1层上一定是满二叉树。
二叉树基本操作
#include <iostream>
using namespace std;
template <class T>
struct node
{
T data;
node<T> *lchild,*rchild;
};
template <class T>
class bitree{
public:
bitree(){root=creat();}
~bitree(){release(root);}
void preorder(){preorder(root);}
void inorder(){inorder(root);}
void postorder(){postorder(root);}
void levelorder();
void qianorder(){qianorder(root);}
void zhongorder(){zhongorder(root);}
void PostOrder();
private:
node<T> *creat();
node<T> *root;
void release(node<T> *bt);
void preorder(node<T> *bt);
void inorder(node<T> *bt);
void postorder(node<T> *bt);
void qianorder(node<T> *bt);
void zhongorder(node<T> *bt);
};
template <typename T>
struct element
{
node<T> *ptr;
int flag;
};
//非递归后序遍历
template <class T>
void bitree<T> :: PostOrder( )
{
node<T> *bt = root;
element<T> S[100]; //顺序栈,最多100个元素
int top = -1; //顺序栈初始化
while (bt != NULL || top != -1) //两个条件都不成立才退出循环
{
while (bt != NULL)
{
top++;
S[top].ptr = bt; S[top].flag = 1; //bt连同标志flag入栈
bt = bt->lchild;
}
while (top != -1 && S[top].flag == 2)
{
bt = S[top--].ptr;
cout << bt->data;
}
if (top != -1) {
S[top].flag = 2;
bt = S[top].ptr->rchild;
}
else
bt = NULL;
}
}
//非递归中序遍历
template <class T>
void bitree<T>::zhongorder(node<T> *bt)
{
node<T> *a[100];
int top=-1;
while(bt!=NULL||top!=-1)
{
while(bt!=NULL)
{
a[++top]=bt;
bt=bt->lchild;
}
while(top!=-1)
{
bt=a[top--];
cout<<bt->data;
bt=bt->rchild;
}
}
}
//非递归前序遍历
template <class T>
void bitree<T>::qianorder(node<T> *bt)
{
node<T> *a[100];
int top=-1;
while(bt!=NULL||top!=-1)
{
while(bt!=NULL)
{
cout<<bt->data;
a[++top]=bt;
bt=bt->lchild;
}
while(top!=-1)
{
bt=a[top--];
bt=bt->rchild;
}
}
}
template <class T>
node<T> *bitree<T>::creat()
{
node<T> *bt;
char ch;
cin>>ch;
if(ch!='#')
{
bt=new node<T>;
bt->data=ch;
bt->lchild=creat();
bt->rchild=creat();
}else bt=NULL;
return bt;
}
//析构
template <class T>
void bitree<T>::release(node<T> *bt)
{
if(bt!=NULL)
{
release(bt->lchild);
release(bt->rchild);
delete bt;
}
else return;
}
//前序遍历
template <class T>
void bitree<T>::preorder(node<T> *bt)
{
if(bt!=NULL)
{
cout<<bt->data;
preorder(bt->lchild);
preorder(bt->rchild);
}
else
return;
}
//中序遍历
template <class T>
void bitree<T>::inorder(node<T> *bt)
{
if(bt!=NULL)
{
inorder(bt->lchild);
cout<<bt->data;
inorder(bt->rchild);
}
else return;
}
//后序遍历
template <class T>
void bitree<T>::postorder(node<T> *bt)
{
if(bt!=NULL)
{
postorder(bt->lchild);
postorder(bt->rchild);
cout<<bt->data;
}
else return;
}
template <class T>
void bitree<T>::levelorder()
{
node<T> *q[100],*p=NULL;
int front1=-1,rear=-1;
if(root==NULL)return;
q[++rear]=root;
while(front1!=rear)
{
p=q[++front1];
cout<<p->data<<" ";
if(p->lchild!=NULL)q[++rear]=p->lchild;
if(p->rchild!=NULL)q[++rear]=p->rchild;
}
}
int main()
{
char ch;
do
{
bitree<char> t;
t.preorder();
cout<<endl;
t.inorder();
cout<<endl;
t.postorder();
cout<<endl;
t.levelorder();
cout<<endl;
cin>>ch;
t.qianorder();
t.zhongorder();
t.PostOrder();
}while(ch=='Y');
return 0;
}