递归算法
:程序直接或间接调用自身的编程技巧
递归函数:直接或间接调用自身的函数
基本思想:把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的小问题。
递归的关键在于找出递归定义和递归终止条件
递归定义:使问题向边界条件。
递归终止条件:所描述问题的最简单情况,它本身不再使用递归的定义。
解题步骤:
- 分析问题、寻找递归:找出大规模问题与小规模问题的关系,这样通过递归使问题的规模逐渐变小。
- 设置边界、控制递归:找出停止条件。
- 设计函数、确定参数:设计函数体中的操作及相关参数。
欧几里德算法(求最大公约数)
递归代码:
GCD(m,n) // 约定m>n
{ if (n==0) return(m);
else return (GCD(n,m mod n));
}
集合的全排列问题
- 先把高位排好,再关注少一位的排列情况;
- 高位有若干种情况,就需要将问题化为多个子问题。每个子问题都与高位的排列有关;
- 要列举出所有高位的情况,以确定子问题;
- 需要离散枚举!
//产生从元素k~m的全排列,作为前k—1个元素的后缀
void Perm(int list[], int k, int m)
{
//构成了一次全排列,输出结果
if(k==m)
{
for(int i=0;i<=m;i++)
cout<<list[i]<<" ";
cout<<endl;
}
else
//在数组list中,产生从元素k~m的全排列
for(int j=k;j<=m;j++)
{
swap(list[k],list[j]);
Perm(list,k+1,m);
swap(list[k],list[j]);
}
}
半数集问题
给定一个自然数n,由n开始可以一次产生半数集set(n)中的数如下。
- n属于set(n);
- 在n的左边加上一个自然数,但该自然数不能超过最近添加的数的一半;
- 按此规则进行处理,直到不能再添加自然数为止。
递归
int comp(int n)
{
int ans=1;
if (n>1) for(int i=1;i<=n/2;i++)
ans+=comp(i);
return ans;
}
计算半数集问题的递归算法—记忆式搜索
int a[1001];
int comp(int n)
{
int ans=1;
if(a[n]>0)return a[n]; //已经计算
for(int i=1;i<=n/2;i++)
ans+=comp(i);
a[n]=ans; //保存结果
return ans;
}