Miniconda3+PyTorch1.7.1(GPU版)+Win10_x64+GTX1060深度学习环境搭建

本文详细介绍了在Win10系统、配备GTX1060显卡的环境下,如何使用Miniconda3搭建PyTorch1.7.1的GPU版本。首先确定CUDA11.2的兼容性,接着通过Anaconda Prompt安装Miniconda3,并设置北京外国语大学开源软件镜像站为镜像源。然后,利用conda或pip命令安装pytorch和torchvision,最后进行环境测试以确保配置成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在这里的初衷,一是备忘,二是希望得到高人指点,三是希望能遇到志同道合的朋友。

硬件信息:
系统:win10家庭中文版
CPU:i7-7700HQ
内存:16GB
显卡:GTX1060


一、确定硬件支持的CUDA版本

NVIDIA控制面板-帮助-系统信息-组件
在这里插入图片描述
CUDA 11.2.135的理解是,当前我安装的显卡驱动最高能支持的CUDA版本是11.2.135。显卡驱动是向后兼容的,新的版本兼容旧的版本
仔细说明请具体查看下边这篇博客:配置显卡驱动、CUDA、cuDNN以及说明三者之间的关系
可知:GTX1060最高能支持CUDA11.2版本,在这里,CUDA10.1比较稳定,pytorch和tensorflow环境配置都支持。

二、打开Anaconda Prompt(Miniconda3)

Miniconda3的环境配置安装可以查看Miniconda3的环境配置
1)更换 北京外国语大学开源软件镜像站
在这里插入图片描述

经过亲测,北京外国语大学开源软件镜像站有pytorch比较新的环境包,可以进行下载
在Anaconda Prompt(Miniconda3)窗口复制以下命令(回车执行),生成.condarc 的文件(位置位于用户目录下)

conda config --set show_channel_urls yes

在这里插入图片描述
以记事本方式打开.condarc文件,删掉里边全部的东西,然后去https://mirrors.bfsu.edu.cn/help/anaconda/这个地址,复制下边全部内容,然后粘贴到.condarc里保存退出

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
  - https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
  - https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https:/
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Expected future

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值