前言
我印象中我的JAVA教学中教递归使用了两个例子,一个是前面说过的斐波那契数列,而另一个也是很有名气的汉诺塔问题,现在Python也用这两个问题来演示递归
一、汉诺塔是什么?
汉诺塔是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置一定数量的金盘,把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上
二、代码演示
1.递归
def hanoi(n, x, y, z):
if n == 1:
print(x, '-->', z)
else:
hanoi(n - 1, x, z, y)
print(x, '-->', z)
hanoi(n - 1, y, x, z)
if __name__ == '__main__':
n = int(input("请输入汉诺塔的层数:"))
hanoi(n, "X", "Y", "Z")
代码其实很简单,只是这个逻辑不太好理解,以下仅是个人理解(假设有64个盘子):
(1)将前63个盘子从A移动到B上,确保大盘在小盘下面;
(2)将最底下的第64个盘子从A上移动到C上;
(3)将B上的63个盘子移动到C上
由此就会有两个新的问题:
问题一:将A上的63个盘子借助C移动到B上
问题二:将B上的63个盘子借助A移动到C上
这样的话,这两个问题又可以拆解为:
问题一:(1)将前62个盘子从A移动到C上,确保大盘在小盘下;(2)将最底下的第63个盘子移动到B上,将C上的62个盘子移动到B上
问题二也是这样的思路
总结
递归,就是方法自己调自己,递归有两个条件:调用函数自身;设置了正确的返回条件。
条件一,可以说是递归的核心;条件二,是递归的结束判断,一旦没有返回条件,递归就会陷入死循环