【题解-Acwing】860. 染色法判定二分图

题目:860. 染色法判定二分图

题目描述

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。

请你判断这个图是否是二分图。

输入

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。

输出

如果给定图是二分图,则输出 Yes,否则输出 No。

数据范围

1 ≤ n, m ≤ 105

时空限制

1s / 64MB

输入样例

4 4
1 3
1 4
2 3
2 4

输出样例

Yes

代码

#include<iostream>
#include<cstring>

using namespace std;

const int Maxn = 1e5 + 10, Maxm = 2e5 + 10;

int n, m;
int h[Maxn], e[Maxm], ne[Maxm], idx;
int color[Maxn];

void init(){
    memset(h, -1, sizeof h);
}

void add(int a, int b){
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx ++;
}

bool dfs(int u, int c){ // 判断染色过程中是否有矛盾出现
    color[u] = c; // 当前点被染成c
    for(int i = h[u]; i != -1; i = ne[i]){ // 遍历与当前点有边的所有点
        int j = e[i];
        if(!color[j]){ // 如果没有被染色,那么染成另一种颜色
            if(!dfs(j, 3 - c)){ // 出现矛盾
                return false;
            }
        }
        else if(color[j] == c){ // 如果被染色了,且与当前点一个颜色,那么就矛盾了
            return false;
        }
    }
    return true;
}

bool isBipartiteGraph(){ // 是否是二分图
    bool flag = true; // 标记是否有矛盾出现
    for(int i = 1; i <= n; i ++){ // 遍历所有点
        if(!color[i]){ // 若当前点没有被染色
            if(!dfs(i, 1)){
                flag = false;
                break;
            }
        }
    }
    if(flag){
        return true;
    }
    return false;
}

int main(){
    scanf("%d%d", &n, &m);
    init();
    while(m --){
        int u, v;
        scanf("%d%d", &u, &v);
        add(u, v), add(v, u);
    }
    if(isBipartiteGraph()){
        puts("Yes");
    }
    else{
        puts("No");
    }
    return 0;
}

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值