题目:860. 染色法判定二分图
题目描述
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。
请你判断这个图是否是二分图。
输入
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。
输出
如果给定图是二分图,则输出 Yes,否则输出 No。
数据范围
1 ≤ n, m ≤ 105
时空限制
1s / 64MB
输入样例
4 4
1 3
1 4
2 3
2 4
输出样例
Yes
代码
#include<iostream>
#include<cstring>
using namespace std;
const int Maxn = 1e5 + 10, Maxm = 2e5 + 10;
int n, m;
int h[Maxn], e[Maxm], ne[Maxm], idx;
int color[Maxn];
void init(){
memset(h, -1, sizeof h);
}
void add(int a, int b){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx ++;
}
bool dfs(int u, int c){ // 判断染色过程中是否有矛盾出现
color[u] = c; // 当前点被染成c
for(int i = h[u]; i != -1; i = ne[i]){ // 遍历与当前点有边的所有点
int j = e[i];
if(!color[j]){ // 如果没有被染色,那么染成另一种颜色
if(!dfs(j, 3 - c)){ // 出现矛盾
return false;
}
}
else if(color[j] == c){ // 如果被染色了,且与当前点一个颜色,那么就矛盾了
return false;
}
}
return true;
}
bool isBipartiteGraph(){ // 是否是二分图
bool flag = true; // 标记是否有矛盾出现
for(int i = 1; i <= n; i ++){ // 遍历所有点
if(!color[i]){ // 若当前点没有被染色
if(!dfs(i, 1)){
flag = false;
break;
}
}
}
if(flag){
return true;
}
return false;
}
int main(){
scanf("%d%d", &n, &m);
init();
while(m --){
int u, v;
scanf("%d%d", &u, &v);
add(u, v), add(v, u);
}
if(isBipartiteGraph()){
puts("Yes");
}
else{
puts("No");
}
return 0;
}